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Abstract 

We will give the definition and basic properties of nearly parallel G;‘(2)-structures on pseudo- 
Riemannian manifolds of signature (4,3). In particular we explain the equivalence of their existence 
with that of Killing spinor fields. Furthermore, we will give first examples of pseudo-Riemannian 
manifolds of signature (4,3) with Killing spinors. 0 1998 Elsevier Science B.V. 
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1. Introduction 

This article relates to the paper of Th. Friedrich et al. [4] on nearly parallel Gz-structures. 
Gz-structures are topological reductions of the frame bundle of a seven-dimensional man- 
ifold to the exceptional group G2. They can be described by 3-forms of special algebraic 
type on the manifold. Since G2 c SO(7) such a structure induces a Riemanman metric and 
in particular a Levi-Civita connection V on the manifold. It is called nearly parallel if the 
associated 3-form w3 satisfies Vzw3 = -2h(Z~* w3). The existence of such a 3-form is 
equivalent to the existence of a spin structure with a Killing spinor field. 

Now we are interested in similar structures on pseudo-Riemannian manifolds, more 
exactly, on manifolds admitting a metric of signature (4,3). There are two real connected 
non-compact groups of type G2. The one with trivial centre denoted by Gz(,) is a subgroup 
of X)(4,3). G;(,) is one of the possible “exceptional” holonomy groups of non-symmetric 
irreducible pseudo-Riemannian manifolds [2]. 
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The Spin(4,3)-representation Ad,3 has some algebraic properties similar to those of the 
Spin(7)-representation A7. In particular, both are real. Furthermore, while Spin(7) acts 
transitively on the sphere S7 with isotropy group G2 the action of the connected component 
@in+(4,3) of Spin(4,3) on the pseudo-Riemanman sphere in A4,3 is transitive with isotropy 
group G$(,). For a fixed spinor @ # 0 in A7 the Clifford multiplication X H X . I) is an 

isomorphism from R7 to the orthogonal complement of $. The same is true in Ad,3 for any 
non-isotropic spinor + . 

These properties will allow us to translate several results from the Riemannian case to 
signature (4,3). We will give the definition and basic properties of nearly parallel GZ?&,)- 
structures. In particular, we explain the equivalence of their existence with that of Killing 
spinor fields. Furthermore, we will give first examples of pseudo-Riemanman spin manifolds 
of signature (4,3) with Killing spinors. 

Analogously to the Riemanman case we have a relation between pairs of Killing spinors 
and Sasakian structures and between triples of Killing spinors and 3-Sasakian structures on 
pseudo-Riemannian spin manifolds of signature (4,3). This will be explained in a broader 
context in [lo]. 

Notation. In the following IwP,q denotes the standard pseudo-Euclidean space of signa- 
ture (p,q), i.e. IwPJ = (IwP+q, g,,q) where gp,q(x, Y) = - CF=l XiYi + Cp,+P4+1 XiYi. 
Similarly, MP,q denotes a pseudo-Riemanman manifold of signature (p, q) . 

2. The exceptional non-compact group Gf&,) 

We consider the standard pseudo-Euclidean space R4,3 of signature (4,3) with the stan- 
dard basis el,ez,..., e7 and define Ei by &i = gb,s(ei, ei). The real Clifford algebra 
Cd,3 = Cliff(R7, -g4,3) is the algebra generated by el, e2, . . . , e7 with the relations ef = 
-&i, f?iej + f?jc?i = 0 if i # j. It is isomorphic to the direct sum R(8) @ R(8) of algebras 
of real 8 x 8 matrices. We will use the isomorphism @ which is defined by 

@J : C4,3 + R’(8) $ R(8) 
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Usually we will identify @ (ei) with ei. The projection prl of this isomorphism onto the first 
component restricted to Spin(4,3)c C43 yields the Spin(4,3)-representation on R* =: A4,3. 
Furthermore, this projection defines the Clifford multiplication of a vector X E R4,3 c C43 
with a spinor + E Ad.3 which we will denote by X . I++. Let u and v be the vectors 
u = ‘(l,O),v = ‘(O,l)and+l = u@u@u = ‘(1,O ,..., O),+z = u@u@u = 
‘(0, 1,. . . ,O), . . . ,~s=U~u~u==(O,... , 0, 1) the standard basis of R8. We identify 
the Lie algebra of Spin(4,3) with @in(4,3) = {W = Cicj Wijeiej 1 Oij E R} c C43. Let 
Dij be the 8 x &matrix whose (i, j)-entry is Ej and all of whose other entries are 0. We 
set Eij = -Dij + Dji. Using this notation ~‘1 o @ becomes with respect to the basis 

1cFl,...,k3 

el w -EM - E27 + E36 + E45, 

e2 t---, EV - EB + E35 - ~~~~ 
es H E16 + EZ + E3g + ~~~~ 
e4 w -EIS + E7.6 + E37 - E4g, 

e5 H E13 - -&!4 - E57 + Ecs, 
e6 H E14 + E23 + E5s + E67, 
e7 +-+ --El2 - Es4 + E56 + ET8. 

(2) 

The following two bilinear forms on Ah,3 are related to the Spin(4,3)-representation. On the 
one hand we have the standard inner product of R8 which we denote by ( , ). It is invariant 
with respect to the maximal compact subgroup ((Pin(4) x Pin(3))/Z2) n Spin(4,3) of 
Spin(4,3) and has the property (X . (p, 9) + (p, 19(x) . $) = 0 for all X E R4g3and q, $ E 
A4,3, where 0 : R4,3 + [w4s3 denotes the reflection with respect to span{es, eg, e7}. On 
the other hand we consider the product ( , )A of signature (4,4) defined by ((p, $)a := 
(eleTegeq(o, $). It is invariant with respect to the connected component Spin+(4,3) of 
1 E Spin(4,3) and the equation (X . p, @)A + (9, X . @)A = 0 holds for all X E R4,3 
and I$?, $f E A4,3. The matrix of ( , )A with respect to the standard basis +I, . . . , I&3 
equals diag(- 1, - 1, - 1, - 1, 1, 1, 1, 1). In particular, we obtain an embedding Spin(4,3) 

c SO(4,4). 
Because of the Spin+(4,3)-invariance of ( , )A the group Spin+(4,3) acts on M, = { 1cI_ E 

A4,3 I (@, @)A = c}, c E R. This action is transitive for c # 0 and has two orbits for c = 0. 

Proposition 2.1. The action ofSpin+(43) on 

S4,3 := {@ E A4,3 1 (+, @)A = 1) 

is transitive. The same is valid for 

H3,4 := ($ E A4,3 1 ($, $)A = -1). 

The orbits of the Spin(43)+-action on 

c := (+ E A4.3 I ($9 $)A = 0) 

are {O) and C \ {O}. 
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Proo$ We consider the subspace lR4,’ = span{et , e2, e3, eq, e6) of [w4,3. The corresponding 
spin group Spin+(4,1) c @in+(4,3) equals Sp( 1,l) and Ad,3 is the standard representation 
of Sp(l,l) on R4,4 = E-U’,‘. Th e assertion now follows from the corresponding properties 
of the Sp(l,l)-action on E-I’,‘. 0 

Corollary 2.1. 
1. The isotropy group H(ljr) = {h E Spin+(4,3) 1 h@ = I+} of a non-isotropic spinor 

I+? E A4,3(i.e. (1,9, +)A # 0) with respect to the Spin+(4,3)-action is a connected 
non-compact group of type G2 with fundamental group HT. 

2. The Lie algebra of the isotropy group of an isotropic spinor is the semidirect sum of a 
six-dimensional nilpotent algebra and SI(3, R). 

Pro05 
1. Because of the transitivity of the Spin+(4,3)-action it suffices to prove that H(+t) has 

the required properties. We first consider the Lie algebra $)(@I) of this group. Because 
of (2) it equals 

6($1) = 

i 

Cmtibijeiej 1 --012 - ~34 •t ~56 = 0, 
iij 

~13-@24-~67=0,-W14-~3+%7=0, 

W6 + 6% - W37 = 0, ml5 - @26 - @47 = 0, 

a17 + 036 + 045 = 0, w27 + @35 - W46 = 0 

I 

. (3) 

It is spanned by X1 = ele2 - ese4, Y1 = e3e4 + egeg , X2 = ete3 + e2e4, Y2 = 

e2e4 - e6e7, x3 = ele4 - e2e3, Y3 = e2e3 + e5e7, x4 = ele6 - e2e5, Y4 = ele6 + 

e3e7, x5 = e2e6 + ele5, Y5 = e2e6 - e4e7, x6 = ele7 - e3e6, Y6 = ele7 - 

e4e5 , X7 = 6287 i- e&j and Y7 = e2e7 - e3eg. Using the isomorphism of @in (4,3) 
and 50 (4,3), we see that the Killing form on ‘@(et) is non-degenerate and has index 
6. Therefore, ‘f)(@l) is a non-compact real form of the semisimple Lie algebra Ij($t)“. 
Furthermore, one reads from the relations 

[Xl, Yll = 0, 

[Xl, x21 = 4X3, [Xl, Y21 = 2X3, 
[Xl, X31 = -4X2, [Xl 3 y31 = 2x2, 

[Xl 7 Xi1 = -2Xi+l9 [Xl, Yil = -2Yi+l (i = 4,6), 

[Xl 9 Xjl = 2Xj-19 [Xl, Yj] = 2Yj-1 (j = 5,7), 

[Yl, x21 = -2x3, [Yl, y21 = 4y3, 

El, x31 = 2x2, WI, Y31 = -4Y2, 

that X1 and Yt commute, but no element out of span {Xl, Yl } commutes with both 
X1 and Yt, i.e h($t)@ has rank 2 and thus it must be simple. Since its dimension 
is 14 it is of type G2. There is only one non-compact real form of the complex Lie 
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algebra of type G2 (see e.g. [12]). Now we determine H(+l). Recall that there are two 
non-compact connected groups of type GZ (see [12]). The simply connected one has 
centre HT. Because of the transitivity of the Spin+(4,3)-action ZY3,4 is diffeomorphic 
to the homogeneous space Spin+(4,3)/H(+r>. Using the exact homotopy sequence 
of this fibration we conclude from n:! (H394) = ni (ZS3,4) = IT~(H~,~) = 0 and from 
nl (Spin+(4,3)) = Z2, no(Spin+(4,3)) = 0 that H($I) is connected and has fundamental 

group ~1 (H(llrr)) = z2. 

We calculate the Lie algebra ‘fj(+t + $5) of the isotropy group of $1 + @5 and obtain 
using (2) 

2. 

= 
c Wjeiej 1 016 -k w25 - ~37 = 0, 
i<j 

ml5 - @26 - 012 + W56 = 0, 034 - W47 = 0, 

w27 + 023 + m35 - 051 = 0,014 + 046 = 0, 

W13 + W7 + 036 - W67 = 0, W24 + W45 = 0 

1 

. (4) 

Hence, 6(+1 + 11/5) is the semidirect sum of the null space n of its Killing form 
spanned by e3eq + eqe7 , e2e4 - e4e5 , ele4 -e4e6, e6e7 -elf% +ele7 +e3e6, ele2 - 

e5e6 -t- ele5 - e2e6, e2e3 - 6567 - e2e7 - e3e5 and the eight-dimensional subalgebra 

P spanned by ele6 + e3e7, ele6 - e2e5, ele2 + e5e6, ele5 + e2e6, ele3 + e6e7, ele7 - 

e3e6, e2e3 + e5e7, e2e7 - e3e5. Obviously, n is nilpotent. The Killing form restricted to 
p is non-degenerate and has index 3. Consequently, p equals i31(3, IX). 0 

Definition 2.1. G;(,) := H(I,+~). 

Remark. In this notation H3%4 is diffeomorphic to Spi~r+(4,3)/G;(~). 

Corollary 2.2. For a fixed spinor + E A4.3 the kernel of the homomorphism 

R4*3 + (+}I c A4,3 

X+--?-X-~ 

(i) is trivial iff + # 0 is non-isotropic; 
(ii) has dimension 3 iff + # 0 is isotropic. 

Pro05 Using (1) assertions (i) and (ii) can be easily verified for T,$ = $1 and + = $I+ +5, 
respectively. Hence, they hold for any 9 # 0. 0 

Now we consider the universal covering h : Spin(4,3) + S0(4,3). Because of -1 9 

G;(2) there is an isomorphism from G;(,) onto a subgroup of SO(4,3), which we also denote 
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by G;(2). We now describe this group using 3-forms on R7. The key point is a special relation 

between non-isotropic spinors in Ad,3 and generic 3-forms in A3(R7). 
We observe that for X, Y E R4,3 the spinors @ and YX@ + 84,3(X, Y)$ are orthogonal 

to each other. By Corollary 2.2 we can define a (2,1)-tensor A$ by 

YX11/ + g4,3(X, Y)llr = Ae(K XI@. (5) 

A+ has the following properties: 

(1) Aq/(X, Y) = -&(Y, X), 
(2) gq(Y, &(Y, X)) = 0, 
(3) &(Y, &(Y, X)) = -IIYlI:,,X + g4,3(X, Y)Y. 

It defines a 3-form 0; by oi(X, Y, 2) = gq(X, Ae(Y, Z)). 
Clearly, 

In particular, if $ = $1 then a direct calculation yields OS, = o& where wi is given by 

6$=-elAezAe7-elAe3Ae5+elAe4Aefj 

+e2Ae3Aeg+e2AeqAe5-e3Ae4Ae7+e5AegAe7. (7) 

Definition 2.2. Let w3 be a 3-form on R7. Furthermore let XI, . . . , X7 be an arbitrary 
pseudo-orthonormal basis of (R7, g4.3). We define a 4-form cr4 by a4 = EYE, si (Xi lw3) 
A (Xi lw3) which does not depend on the chosen basis. We will say that o3 defines the 
orientation of R7 if w3 A o4 is a positive multiple of the volume form of R7. Furthermore, 
we will say that w3 defines the space and time orientation of (W7, gq) if it defines the 
orientation of R7 and if w3(X5, x(j, X7) > 0 for any positively space and time oriented 
pseudo-orthonormal basis Xl, . . . , X7. 

Theorem 2.1. There is a one-one correspondence between H3,4/{ 1, - 1) and those w3 E 
A3(R7) which define the space and time orientation of (R7, gq) andfor which the bilinear 
map A dejined by 03(X, Y, Z) = gq(X, A(Y, Z)) hasproperties (l)-(3). 

Analogously, there is a one - one correspondence between S4,3/{ 1, -1) and those w3 E 
A3 (R7) which dejne the inverse space and time orientation of (R7, g4,3) andfor which the 
bilinear map A defined by w3 (X, Y, Z) = g4,3 (X, A(Y, Z)) has properties (l)-(3). 

Prooj Let I++ # 0 be a fixed non-isotropic spinor and o$ the associated 3-form. With the 

same notation as above we obtain o$, A a$ = 42el A . . . A e7. Hence, w$ defines the 

orientation of R7. 
Now fix a spinor + with (+, $)a = -1 and let Xl, . . . , X7 be a positively space 

and time oriented pseudo-orthonormal basis. From the definition of Aq, we know that 

g+s(Ap(X5, X6), &(X5, X6)) = 1 and therefore Ae(X5, X6) $ 1x5, X6, X7j1. Since 

A+(Xs, X6) -I_ X5, X6 the vectors Ap(X5, X6) and X7 cannot be orthogonal. Hence, 
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6.$(X5, X6, X7) # 0. Since on the other hand o$, (es, eg, e7) = 1 we obtain $,(X5, X6, 

X7) > 0. Hence w$ defines the space and time orientation of (R7, g4,3). 

Vice versa, let A be a (2,1)-tensor on R7 which has the properties (l)-(3). Then A 
defines a 3-form w3 = g4,3(., A(., +)). We can define a4 in the same way as above. From 
properties (l)-(3). we conclude w3 A o4 # 0. Suppose that w3 defines the orientation of 
R7 . Furthermore, from properties (l)-(3) we deduce as above that w3 (X5, Xfj, X7) # 0 
for any oriented pseudo-orthonormal basis X1, . . . , X7. Suppose that m3 defines the space 
and time orientation of (R7, 84.3). Consider now the subspace 

E = ]llr E A4,3 I XYllr = -g4,3(X, W + A(X, WI. 

Then E is one-dimensional and spanned by a spinor $0 with ($0, $0) A = - 1. In particular, 
liJ3 = 6+@. 0 

In particular, since we have for g E Spin+(4,3) 

o;* = (Ug-‘))*olk., 

we conclude: 

Corollary 2.3. The image of G&,) with respect to h : Spin(4,3) I--+ SO(4,3) equals 

G;(,, = {A E SO+(4,3) I A*wo = wg}. 

Note that A E SO(4,3) and A*w = CIQ imply A E SO+(4,3) since wc defines a space 
and time orientation. 

On the other hand the equation A*wi = W; for A E GL(7) implies A E SO(4,3) . The 
proof is similar to that in the G2-case (see [2]). Consequently, we obtain 

G;(,) = {A E GL(7) I A*@; = w;}. 

Next we investigate in the same way as above the action of Spin+(4,3) on some of the 
manifolds 

V(&,..., 61) = {(COI, . . . , VI) I Y-+ E 436 = 1, . . . ,I), 
((Pi, %)A = &(i = 1, . . . , l), 
((Pi,pj)A =Oifi #j (i,j = l,...,E)), 

where&=-lfori=l,__., k(kI.Z)andSi=lfori=k+l,..., 1. 

Proposition 2.2. The action of Spin+ (4,3) on V (- 1, - 1) , V (- 1,l) and V (1,l) is transi- 
tive. 

Proo$ Since eleg E Spin(4,3) maps S4,3 one-to-one onto H3q4 and 

(ele5)Spin+(4,3)(ele5)-1 = (eles)Spin+(4,3)(-e5el) = Spin+(4,3), 

the situation on V (- 1, - 1) and V (1, 1) is essentially the same. 

(8) 
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We calculate the dimension of the isotropy group H(9t, p2) of an arbitrary pair (9,) 92) 

with (9~1~91) A = - 1, (91,402) A = 0 and 92 # 0. Clearly (see Proposition 2. l), we may as- 
sume 91 = 1crl. Next we shall explain why we can assume furthermore 92 = x2e2 +. x~I+?~. 

The isotropy group G;(,) of @I contains W(3) and SU(2) as subgroups. The Lie al- 
gebra Sc(3) C 50(4,4) is spanned by e3eq + egeg = 2(-E34 - E56), e2e4 - e@7 = 
2(E24 - E57), e2e3 -I- e5e7 = 2(-E23 i- E67) and W(2) c S0(4,4) by ere2 - e3e4 = 
2(E56 - E78), ele3 + e2e4 = -2(&7 + E6s), 6184 - e2e3 = 2(Ess - E67). Therefore 
we can first achieve that 92 = x2*2 + x5 $5 + x6+6 + x7$7 + x&S using the action of 
W3) c G&,) and after that 92 = x2$2 +x5$5 using ~(2). 

Thus, let 92 be x2+2 + x5 @5. Eqs. (2) imply that the Lie algebra @($I, x2pb2 + x~I+~~) of 
the isotropy group of (+I, x7_& + x5 $5) equals 

6(1cFl, x2*2 +x5*5) 

= 
c Oijeiej 1 -642 - ~334 i-w56 = 0, 
iij 

W3 - 024 - w67 = 0, ~14 + ~23 - 057 = 0, 

- @16 - 0z5 + w37 = 0, Wl5 - W26 - 047 = 0, 

ml7 + 036 + 045 = 0, W27 + W35 - 046 = 0, 

x5@47 = 0, x2W47 = 0 

x2w57 - x5w45 = 0, x2067 - x5W46 = 0, 

x5w34 + x2@37 = 0, x5w24 + x2W27 = 0, 

X5a14 + X2Wl7 = 0 

1 

. (9) 

Since not x2 = x5 = 0 the dimension of the Lie algebra lj(91, a) of H(91, a) equals 8 
and the one of the orbit of (901~92) equals 13. Hence, all orbits are open sets and the action 
of $in+(4,3) is transitive. 0 

Corollary 2.4. The isotropy group of a pair (91,92) of pseudo-orthonormal spinors with 
respect to the Spin+(4,3)-action equals 

(1) Su(12) if(91, 92) E v(-1, -1) Or v(1, 11, 

(2) SL(3,R) if(91792) E v(-1, 1). 

Proo$ The Lie algebra of H($t ,142) equals 

6(+1, $2) = 1 Wjeiej 1 --W12 - W34 + W56 = 0, 
i-cj 

013 - a24 = 0, ml4 + W23 = 0, ml6 + @25 = 0, 

015 - a26 = 0, W36 + W45 = 0, W35 - @46 = 0, 
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Oi7=O,i=l,..., 6 . 

I 

(10) 

As a subalgebra of 50 (4,4) it is spanned by E34 + E7s , E56 - E7s , E57 + E6g , Es8 - 
E67 , E37 + E4g , E3g - E47 , E35 + E46 , E36 - E45 and equals therefore su (1,2) where 
SU(l,2) C SU(2,2) C SO(4,4) is embedded in the usual way. We conclude that the con- 
nected component of H($t , @2) must be SU( 1,2). On the other hand V(- 1, - 1) is simply 

connected. This follows from the exact homotopy sequence of the fibration SO+(2,4) & 
SO+(4,4) + V(- 1, - 1). Using now the exact homotopy sequence of H(@t , @2) + 
Spin+(4,3) + V(-1, -1) we deduce from nt(V(-1, -1)) = 0 that H($t, @J is con- 
nected. Thus H(+t, +2) = SU(1,2). 0 

Now we turn to the Lie algebra of H(+t , +5). It is equal to 

q(‘kl, @5) = CWjeiej 1 -646 - w25 •k 037 = 0, 

iij 

042 - W56 = 0, Wl3 - w67 = 0, @23 - W57 = 0, 

@15 - m26 = 0, WI7 + w36 = 0, w27 + 035 = 0, 

wi4=01i=1,2,3,w4j=0,j=5,6,7 . 

I 

(11) 

Using the isomorphism of spin (4,3) and 50 (4,3), we see that the Killing form on h(+t , +5) 
is non-degenerate and has index 3. Therefore, h($t, $5) is a non-compact real form of the 
semisimple Lie algebra @(et, +J)@. Since, furthermore, h(+t , I&)@ has dimension 8 it must 
be simple and therefore equal to 51(3,@). The index of the Killing form distinguishes the 
various real forms of eI(3,C). We conclude that I)($t, +5) equals Ol(3,lR). Next we prove 
that H($t , $5) is connected and has fundamental group E2 which implies immediately 
H(@t, $5) = SL(3,R) since the centre of the universal covering of SL(3,R) equals E2. 

Using the exact homotopy sequence of the fibration SO+ (3,3) 2 SO+ (4,4) - V(- 1, 1) 
weseethatnz(V(-1, 1)) = rrt(V(-1, 1)) =O.Alookattheexacthomotopysequenceof 
the fibration H($t , 7+b5) + Spin+(4,3) -+ V(-1, 1) now shows that nt(H(@t, +5)) = 

7tt (Spin+(4,3)) = Z2 and no(H(h, @5), 1) = 0. 0 

Proposition 2.3. The action ofSpin+(4,3) on the Stiefel manifolds V(- 1, - 1, - 1), 
V(-1, -1, l), V(-1, 1, 1) and V(l, 1, 1) is transitive. 

Proo$ As in the proof of Proposition 2.2 it suffices to consider V (- 1, - 1, - 1) and 
V (- 1, - 1, 1). Again we calculate the Lie algebras of the corresponding isotropy groups. 
Let rpt, ~2 and ~3 pseudo-orthonormal spinors with (~1, (PI)* = -1 and ((~2, p2)~ = -1. 
Because of Proposition 2.2 we may assume (pt = $1 and ~2 = $2. Again the isotropy group 
of (et, @2) contains the same subgroup isomorphically to SU (2) as mentioned in the proof 
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of Proposition 2.2 and the group SO(2) c SO(3) acting on span{&, IJ?~}. Therefore we 
may set 1p3 = x3*3 + x5*5. Then the isotropy group of (cpt , ~2, c,o3) has the Lie algebra 

= 
c Wijeiej 1 --012 - CO34 + 056 = 0, 
iij 

WI3 - w24 = 0, ml4 + 023 = 0, 016 + 025 = 0, 

ml5 - w26 = 0, W36 + 045 = 0, a35 - 046 = 0, 

x4056 - x5w45 = 0, x5W34 + x4036 = 0, 

x5w24 + x4w6 = 0, x5Wl4 + X4016 = 0, 

X9046 = 0, x4ti46 = 0, 

wi7 = 0, i = 1, . . . ,6 

I 

. (12) 

Since not x3 = x5 = 0, the dimension of lj((ot ,p2, (43) equals 3 and the action is transitive. 
0 

Corollary 2.5. The isotropy group of a triple ((PI, (~2, ~3) of pseudo-orthonormal spinors 
with respect to the Spin+(4,3)-action equals 

1. SU(2) if(col, $92,993) E V(-1, -1, -1) 07 V(l,l,l), 

2. sL(2,R) if(pl, P2,v3) ??v(-I,-l,l) Or v(-l,l,l). 

ProoJ The Lie algebra of the isotropy group H(@t , $2, $3) of (1,9t,&, $3) equals 

$($I, $2, $3) = 

i 

CWjeiej I W12 + 034 = 0, 

icj 

WI3 - w4 = 0, @14 + w3 = 0, 

Wi5 = @i6 = Oi7 = 0 

I 

. (13) 

As a subalgebra of Go (44) it is spanned by Es6 - E78, E57 -k E6a and Es8 - E67 and 
equals therefore W(2) where SU(2) c SU(2,2) c SO(4,4) is embedded in the usual way. 
In particular, the connected component of the unity of H(+t, @2, I&) is isomorphic to 
SU(2). It remains to prove that H(+t , 11/2, 1,+3) is connected. A look at the exact homotopy 
sequence of the fibration H (et, +2, $3) - Spin+(4,3) + V (- 1, - 1, - 1) shows that 
it suffices to prove that the group nt (V(- 1, - 1, - 1)) equals Z2. But this is clear from the 

exact homotopy sequence of SO+( 1,4) & SO+(4,4)--+ V (- 1, - 1, - 1). 
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We now prove the second assertion in the same way. The Lie algebra of the isotropy 

group H(~l~ $5, $6) is 

6($1, $5, $6) = Cmijeiej 1 WI2 - W56 = 0, 

i<j 
WI6 + w25 = 0, 015 - 026 = 0, 

As a subalgebra of Bo (4,4) it is spanned by E34 + E78 , E37 + E48 and Ess - E47 and equals 
therefore eu(l, 1) where SU(l,l) c SU(2,2) c X)(4,4) is embedded in the usual way. In 
particular, the connected component of H (1++1,11/2, $5) is isomorphic to SU(2) which is 
on the other hand isomorphic to SL(2; rW>. To show that H ($1, $5, $6) is connected it 
suffices to verify that the Stiefel manifold is simply connected. But this follows again 

from the exact homotopy sequence of the corresponding fibration X)+(3,2) & S&(4,4) 
* V(-l,l, 1). 0 

The rest of this section is devoted to real representations of G;(,, . Recall that all complex 
representations of g2(2) are of real type [ 121. Therefore, the real irreducible representations of 
the universal covering Gy2) of G;,,, correspond to the real forms of the complex irreducible 

- 
representations of g2(2). On the other hand the fundamental representations of G2(2), i.e. 
the standard representation on R7 and the adjoint representation are in fact representations 

of G;(2). Thus all representations of Gy2) are representations of G$(,). We conclude that 
the real irreducible representations of G.&,, correspond exactly to the complex irreducible 
representations of 92~2). In particular, the dimensions of the irreducible real representations 
are 1,7, 14,27,. . . Furthermore, the decomposition of Ap(R7) into irreducible components 
of the G;(,) -action is similar to that with respect to the action of the compact group G2, 

Denote by * the Hodge-operator of the pseudo-Euclidean space (W7, 84,~) and let wi be the 
3-form defined by (7). Then we have: 

Proposition 2.4. 
1. R7 = A1 (R7) =: A: is irreducible. 
2. A2(R7) = A: @ A:,, where 

A; = {a2 E A2 1 *(co; A a2) = 2a2} = {Xx; 1 X E R7} 

AT, = {a2 E A2 1 *(LO; A a2) = -01~) = g2(2) 

3. A3(R7) = AT @ A; $ A;,, where 

A;={tw; 1 t E R’}, 

A; = {*(w; A a’) 1 a1 E A;), 

A;, = {a3 E A3 1 a3 A co; = 0, ct3 A *w; = 0). 
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3. Killing spinors 

Now let (M4v3 , g4,3) be a seven-dimensional pseudo-Riemannian spin manifold of sig- 
nature (4,3) which is space and time oriented. Assume that M4,3 admits a spin structure 
Q(M4,3). This is a Spin+(4,3)-reduction of the bundle R(M4,3) of all space and time ori- 
ented pseudo-orthonormal frames. Then the spinor bundle S of M4,3 is the associated bundle 

QW4*3) ~,s~in+(4~) A4.3. Furthermore V denotes the Levi-Civita connection on the tan- 

gent bundle T M4,3 as well as the induced covariant derivative on S. The pseudo-Euclidean 
product ( , )a on Ad.3 induces a product of signature (4,4) on S. 

Definition 3.1. A section I++ E r(S) is called Killing spinor if there is a real number h # 0 
such that the differential equation 

Vx$=hX*@ 

is satisfied for all vector fields X E E(M4g3). We call 1 the Killing number of I,?. 

The following properties of Killing spinors are well-known [ 11. Let @ E r(S) be a 
Killing spinor on M4,3 with Killing number h. Then (@, +)A is constant on M4v3. Hence, 
it makes sense to say that a Killing spinor is spacelike, timelike, or isotropic. For the Ricci 
map Ric : TM4,3 + TM4,3 of the tangent bundle the equation Ric(X)+ = 24A2 X . pk 
holds. If + is non-isotropic, this means that M4y3 is an Einstein manifold of scalar curvature 
t = 168h2. Now let W be the Weyl tensor of M4*3. Then W(X, Y) . + = 0 for all X, Y E 
IE(M4*3), where this product is defined in the following way. Let St, ~2, . . . , s7 be a local 
pseudo-orthonormal frame, &i = g(Si , si) and W’ijkz = W(si , Sj , sk, sl). Then 

W(S~, Sj) * $h = c EkF?[WijklSk . Sl * )!f. 

k-d 

Of course, parallel spinors have the same properties. We now turn to the question of how 
many Killing spinors can exist on (M4s3, 84.3). 

Theorem 3.1. Zf there exist four orthogonal non-isotropic Killing spinors with the same 
Killing number on ( M4v3 , g4.3) such that at least three of them have the same causal type 
then M4,3 is conformally$at. 

Pro05 LetpI,..., ~pq be four such Killing spinors. Let (pa, ~~)a = -1 for (Y = 1,2,3. 
Because of the transitivity of the Spin+(4,3)-action on V(- 1, - 1, - 1) we may assume that 
for some local time and space oriented pseudo-ortbonormal frame st , . . . , s7 the spinor ~0, 
equals llr(y for (II = 1,2,3. Moreover, since the isotropy group of (et, @2, @3) equals S U (2) 
acting on span{ $5, $6, $7, +lrg } we can assume ~4 = x4$4 +x5 $5 where x4 and x5 are real 
functions. The condition W(si, sj) . va = 0 (a = 1,2,3) implies 

Wijl2 + Wij34 = 09 Wijl3 - Wij24 = 07 Wijl4 + Wij23 = 0 

and Wijkl = 0 for any other k, 1. Furthermore, we have 
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=x5((-wij12 + Kj34)$6 + (Wijl3 + Wij24)$7 + (Wij14 + Wij23)@8}. 
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Consequently, in case xg # 0 the Weyl tensor must vanish and we are done. Consider now 
the case xs (m) = 0 form E M4,3. If there is any seq uence m, E M4*3 which converges tom 
and such that x5(mn) # 0 then by continuity of the Weyl tensor we have again W(m) = 0. 
Assume now that x5(m) = 0 on an open set containing m, i.e. 604 = $4. Since ~1, . . . , ~4 
are Killing spinors we have V,, llr(y = hst . I++~ (a = 1, . . . ,4). We can calculate the covariant 
derivative using the local connection forms wij = si Ej g4,3 (Vsi , sj) and obtain 

vs,@a = i C&i&jWj(SIbi .sj*&=hsl*l,ha (cX=1,...,4). 
icj 

In particular, 

--w27@1) - w35@1) + w46@1) = 2a., 

--w27@1) + @35h) - @46@1) = 2a, 

--w27@1) + W35bl) + w46@1) = -2kc, 

-w27h) - w35bl) - @46h) = -2& 

which is impossible if h # 0. The assertion can be proved similarly if (pU, (p,)~ = 1 for 
a! = 1,2,3. 0 

3.1. Geometrical and nearly parallel G;C2j-structures 

Let M7 be a seven-dimensional manifold and R(M7) the frame bundle of M7. We define 
the bundle AZ (M7) by 

A3,(M7) := R(M7) x~~(7) &R7) c R(M7) xGL(7) A3(R7) = A3(M7), 

where Az(R7) is the open subset {A*&; 1 A E GL(7)} of A3(R7). 

Definition 3.2. A topological G&) -structure (Spin+(4,3)-structure) on M7 is a G;,,,- 

reduction (Spin+(4,3)-reduction) of the frame bundle R(M7). 

The fact that Gz(,) is a subset of SO+ (4,3) and of Spin+(4,3) implies that a G$,)- 

structure P c R(M7) on M7 induces an orientation of M7 (i.e. wr = 0) , a pseudo- 
Riemannian metric g4,3 of index 4 on M7 together with a space and time orientation such 
that the corresponding SO+ (4,3)-bundle equals P XG;(~, SO+(4,3) and a spin structure 

P XG~ Spin+(4,3). Furthermore it defines the following timelike spinor $ E r(S) in the 
real spinor bundle S = P xG;(*, Ad,3 of M7. Since G;(,) C Spin+(4,3) is the isotropy group 

of@1 ~A4,3themap@:P- A4,3;~(p)=~1hastheproperty@(pg)=g-’1@forall 
g E G&,) and is therefore a section in S. Because of the G&)-invariance of ~0 the G$(,)- 

structure defines in the same way a section m3 in Az(M7) = R(M7) XGL(7) Az(R7) = 
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pGz X$(2, A:(R7) byw3 : P + A2(R7); w3(p) = wi. On the other hand the spinor @ 

defines a (2,1)-tensor field A = A+ (see Eq. (5)) on M7 and w3 = g4,3(., A(., .)) holds. 
Vice versa, suppose we are given a 3-form m3 in Az(M7) then M7 admits a Gz(,)- 

structure P consisting of all frames relative to those u3 equals wi. Secondly, given a 
pseudo-Riemannian metric g4,3, a space and time orientation, a Spin+(4,3)-structure and 
a timelike spinor $ on M7 then M7 admits a G$(,) -structure P consisting of all frames 
relative to those $ equals $0. 

Now we turn to geometrical G~(2)-structures. 

Definition 3.3. Let P c R(M7) be a topological GTC2)-structure on M7 and g4,3 the 
associated Riemanman metric with Hodge operator *. P is said to be geometrical if one of 
the following equivalent conditions is satisfied. 

(i) V reduces to P. 
(ii) The holonomy group HoZ(M7, g) of M7 is contained in G&,). 

(iii) The associated 3-form m3 is parallel, i.e. Vo3 = 0. 
(iv) dw3 = 0, d * o3 = 0. 
(v) The associated spinor field + is parallel, i.e. VI++ = 0 . 

For a proof of (iii) _ (iv) see [3,5,6]. 
Now we can generalize the condition V@ = 0 and obtain the notion of a nearly parallel 

G;(Z) -structure. 

Definition 3.4. Let P c R(M7) be a topological G~(2)-structure on M7 and g4,3 the 
associated Riemannian metric with Hodge operator *. P is said to be nearly parallel if one 
of the following equivalent conditions is satisfied. 

(i) The associated spinor 1+9 is a Killing spinor with Killing number A. 
(ii) The associated tensor A satisfies 

(VzA)(K X) = 2%4,3(K Z)X - g+s(X Z)y + A(Z, A(y, X))]. 

(iii) The associated 3-form w3 satisfies 

VzJ = -2h(Z--J * J). 

(iv) The associated 3-form w3 satisfies 

d * w3 = 0, dw3 = -8h * w3. 

For a proof of (iii) _ (iv) see [4]. 

3.2. Examples of homogeneous spaces with Killing spimors 

In the following we describe various seven-dimensional spaces with homogeneous 
pseudo-Riematian metrics of index 4. One can check directly that they all admit a homoge- 
neous spin structure and using Wang’s theorem on invariant connections (see [ 111) that there 
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are Killing spinors on them. We obtain Section 3.2.1- 3.2.3 example in remembering that we 
know seven-dimensional Riemtian homogeneous examples arising as S’ -fibrations over 
the twistor spaces of S4 and CP2 and constructing analogue S’ -fibrations over the twistor 
spaces of RP4yo, S2,2, CP’,’ = U(2, l)/(U(l) x U(1, l)), CP2qo = U(2, l)/(U(2) x 
U(1)) and SO+(l,l)-fibrations over the reflector spaces (see [8]) of S2,2 and SL(3,1w)/ 
GL+(2,R). The further examples are also in a certain sense dual spaces of known compact 
Riemannian ones with Killing spinors, namely V5,2 = SO(5)/SO(3) and SO(5)/SO(3),,. 
All examples can be understood in the context of “T-dual” spaces where we have a method to 
construct pseudo-Riemanman homogeneous spaces with special curvature properties from 
compact Riemannian ones. This is described in [9]. 

3.2.1. The round and the squashed (4,3)-sphere 
The standard pseudo-Riemanman sphere S 4,3 is space and time oriented and admits a 

homogeneous spin structure. There is an eight-dimensional space of Killing spinors on S4,3 
to each of both possible Killing numbers. Each of these spaces is spanned by four timelike 
and four spacelike Killing spinors (with respect to ( , )A). We can consider the following 
fibrations of S4,3 which are similar to the Hopf fibration of the Riemannian sphere S7: 

s3 = Sp(1) ----, s4,3 = Sp(1, l)/Sp(l) 

--_, S4Jp_2 = w P lqO = SPO, l)lSP(l) x &J(l), 

S2,’ = Sp(2,R) + S4,3 = Sp(4,R)/Sp(2,R) 

+ S2g2 = Sp(4,R)/Sp(2,R) x Sp(2,R). 

Now we can squash the fibres of these fibrations with scaling factor i to obtain in each of 
both cases a further Einstein metric on the sphere S4v3. Both metrics admit a one-dimensional 
space of non-isotropic Killing spinors. S4,3 can be considered as U(l)-fibration over the 
twistor space of S2,2 or S4,‘/Z2 or as [W*-fibration over the reflector space of S2s2. 

3.2.2. Thespacesfi(l,l)andi?(l,l) 
Consider now the homogeneous space fi (1,l) = SU (2,1)/S’ where the embedding of 

S’ into SU (2,l) is given by 

s’ c+ SU(2,l) 

2 M diag(z, z, ze2) 

We decompose eu(2,l) into &(2,1) = f @ ml @ tn2 where t is the Lie algebra of S’, m2 is 
the Lie algebra of SU(2) c SU(2, l), and ml equals (f @ rt12)~ c &(2,1) with respect to 
the Killing form B of ~u(2,l). Then 

-Bt = -B Im,xrn, -2tB lmZxnt~ 

on ml em2 induces a left invariant metric g, on I? ( 1,l). fi ( 1,l) is space and time orientable 
and admits a spin structure. Again there are two possible choices oft to obtain an Einstein 
metric. In case t = 1 we obtain a metric together with three linearly independent Killing 
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spinors of the same causal type and with the same Killing number. For t = 4 we obtain a 
further Einstein metric on fi (1,l) together with a one-dimensional non-isotropic space of 
Killing spinors. 

Next we consider the homogeneous space fi(l,l) = SU(1,2)/S’ where the embedding 
of S’ into SU( 1,2) is given by 

S’ L) SU(1,2) 

z I+= diag(z, z, ze2). 

We decompose &I( 1,2) into Su (1,2) = t $ ml $ m2 where f is the Lie algebra of S’ , m2 is 
the Lie algebra of SU(l,l) c SU(1,2), and ml equals (I $ rn# c su(l, 2) with respect 
to the Killing form B of Gu (1,2). As above 

-& = -B lrn,xrn, -2tB lnqxrn~ 

on m 1 G3 m2 defines a left invariant metric g, on fi( 1,l). fi( 1,l) is space and time orientable 
and admits a spin structure. Again we obtain in case t = 1 an Einstein metric together 
with three linearly independent Killing spinors, now of different causal type, with the same 
Killing number. For t = 4 we obtain a further Einstein metric on fi( 1,l) together with a 
one-dimensional non-isotropic space of Killing spinors. 

fi(l,l)andfi(l,l)areS’-fibrationsoverU(2, l)/U(l)xU(l)xU(l)whichisthetwistor 
space of @P2qo and simultaneously the twistor space of CP”‘. Furthermore, $( 1, 1) is a 
fibration over CP2,’ with fibre RP3 and fi (1,l) is a fibration over CP’,’ with fibre RP2,’ : 

RP3 = U(2)/U(l) --+ fi(l,l) = SU(2, 1)/U(l) + @P2,0 = SU(2,1)/U(2) 

RP2,’ = U(1, 1)/U(l) + rj(l,l) = SU(1,2)/U(l) 

---+ CP’,’ = SU(1,2)/U(l,l). 

The second Einstein metric on N( 1,l) arises from the first by squashing the RP3-fibres over 
CP”v2 and in case of $(l,l) the second Einstein metric arises from the first by squashing 
the lRP2,‘-fibres over CP’,‘. 

3.2.3. The space N(l,l) 
Analogously we treat N(l,l) = SL(3,lR)/lR+ where the embedding of If%+ into SL(3,R) 

is given by 

lR+ L, SL(3,R) 

r H diag(r, r, re2). 

It can be considered as a fibration with fibre [w+ over the double covering of the reflector 
space of SL(3,R)/GL+(2,R) and as fibration over SL(3,W)/GL+(2,R) itself with fibre 
S2, I. F?( 1,l) admits a homogeneous Einstein metric with three linearly independent Killing 
spinors of different causal type. We get a second Einstein metric in squashing the fibres 
over SL(3,R)/GL+(2,R). This squashed metric admits one non-isotropic Killing spinor. 
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3.2.4. Stiefel manifolds 
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Let SO+(4,1), SO+(2,3), SO+(3,2) be the connected components of the isometry groups 
of lR4,‘, lR2,3 and (W5, g = diag(- 1, - 1, 1, - 1, 1) ) , respectively. The embeddings 

SO(3) L) SO+(4,1) , SO+(2,1) - SO+(2,3) , SO+(2,1) c, SO+(3,2) 

are given by 

All these Stiefel manifolds are fibrations over the corresponding Grassmann manifolds. If 
we stretch the homogeneous standard metric (induced by the Killing form) in direction 
of the fibres by i we obtain an Einstein metric with a two-dimensional space of Killing 
spinors. In case of SO+ (2,3) /SO+(2, 1) all Killing spinors have the same causal type. In 
both other cases we find non-isotropic Killing spinors of different causal type. 

3.2.5. SO+(2,3)/SO+(2,1), 
First we describe the embedding of SO+ (2,l) into SO+ (2,3) which we will use here. 

We denote by X2(R2*‘) the harmonic (with respect to the indefinite metric) , homogeneous 
polynoms of degree 2 on R3. We define an indefinite inner product on ‘,V2 (R2, ‘) by 

(PI, ~2) = 
s 

PI (ix, iy, z)p2(ix, iy, z) dx dy dz 

s2 

for pt, p2 E ti2(R2,1). SO+ (2,l) acts on 7f2(R2~‘) by (A . p)(x, y, z) = p(A . (x, y, z)) 
for A E SO+(2, 1)) p E ?-12(1w2,1). The infinitesimal actions corresponding to the one- 
parametric subgroups 

are Al = y 1 @/a~) + z. @/a~), A2 = z. (t3/&) +x e (a/az) and A3 = x . (tI/ay) - y . 
(l3/Clx), respectively. One proves Al, A2,, A3 E 50 (2,3). Hence, we obtain an embedding of 
SO+(2, 1) into SO+ (2,3). Wedenote its image by SO+ (2,1),. Thereexists ahomogeneous 
Einstein metric on SO+ (2,3)/SO+(2, l)m with a one-dimensional space of non-isotropic 
Killing spinors. 

3.3. Warped products with Killing spinors 

3.3.1. Pseudo-Riemannian manifolds of signature (4,2) 
Consider first R4,2 = Span{ei, . . . , eg} C R4s3. we may restrict the real Spin(4,3)- 

representation to Spin(4,2) and obtain the real spinor representation A4,2 of Spin(4,2). The 
connected component Spin+(4,2) of 1 E Spin(4,2) acts transitively on S4q3 and H3,4. 
Actually, the proof of Proposition 2.1 remains valid. 
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The multiplication of spinors by the volume form of (W6, g4,2) yields a complex struc- 
ture on A4.2. In fact, let Xl, . . . , x(j be a positively oriented pseudo-orthonormal basis of 
(E@, g4,2). Then we define J* by J*(e) = X1 . . . X6@. J * does not depend on the choice 
of the pseudo-orthonormal basis. We have J A = -I @ I @ F with respect to the standard 
basis @I, . . . , I&. Furthermore, J* has the following properties. 
1. (JA)2 = -1. 
2. X. J*($) = -J*(X . I@) for any X E R4q2. 
3. Besides (X . @, $)A = 0 we also have (X . I++, J*(e))* = 0. 
Therefore the map 

R4,2 -_, {I++, JA(@)}’ c R434 

x-x.+ 

is an isomorphism for any spinor 3 E A4,2 with (I++, I,%)* # 0. In particular, we obtain a 
complex structure Je of lR4,2 defined by 

J*(X). + := J*(X . +) for any X E R4,2. 

Now let (F 4,2 h) be a pseudo-Riemamtian manifold of signature (4,2). J* defines a com- , 
plex structure Js on the spinor bundle SF of F 4,2. We have V Js = 0. Assume now that 
F4,2 admits a Killing spinor q~ # 0 with Killing number It. Then obviously Js(q) is a 
Killing spinor with Killing number -h. Furthermore, any nowhere vanishing nor isotropic 
section + E r(SF) defines a complex structure Jti on F4,2. If 1+9 is a non-isotropic Killing 
spinor then J+ is nearly Kahlerian. 

Next we discuss examples of such manifolds with Killing spinors. 
?%eflag manifold k (1,2) = SU(2, 1)/U(l) x U(1). Consider the homogeneous space 

SU(2,l) /U(l) x U(1) where the embedding of U(1) x U(1) into U (2,l) is given by 

U(1) x U(1) c, SU(2,l) 
- - 

(zt, ~2) ++ diag(zl, ZL zlzd. 

We decompose SLI (2,l) into &(2, 1) = u(1) $ u(1) @ m where m is the orthogonal 
complement of u(1) @ u(1) in Su (2,l) with respect to the Killing form B of 511 (2,l). 
Now -B Imxm induces a SU(2, 1)-invariant Einsteinmetric on SU(2, l)/(U(l) x U(1)). 
k( 1,2) admits a spin structure. There exists a one-dimensional space of Killing spinors for 
each of both possible Killing numbers. SU(2, l)/(U(l) x U(1)) can be considered as the 
twistor space of CP2so as well as the twistor space of CP”‘. Note that the metric considered 
here is not a Kahler-Einstein one. Those can be obtained from it by resealing the fibres over 
CP2,0 or CP’,‘. 

GL+(3,R)/R+ x Iw+ x SO(2). The embedding of [w+ x I@ x SO(2) into GL+(3,R) 
is given by 

R+ x R+ x SO(2) L-, GL+(3,R) 

G-1, n, 4 - (rd r2T4). 
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There exist two homogeneous Einstein metrics on GL+(3,lR)/R’ x Iw+ x SO(2). As 
above the one induced by the Killing form of GL+(3,lR) admits a one-dimensional non- 
isotropic space of Killing spinors for each of both possible Killing numbers. GL+(3, R)/ 
I&+ x Iw+ x SO(2) is the twistor space of SL(3,lR)/GL+(2,R). 

SO+(4, 1)/U(2), SO+(2,3)/U(l,l). Using 
0 -1 

Jo= 1 o ( ) 
we define the matrix 

Then U(2) is the subgroup U(2) = {A E SO(4) 1 AJ = JA} of 

S 0 (4). Furthermore, we have the embedding 

U(2) c SO(4) c, SO(4,l) 

A- 
A 0 

C > 0 1 . 

Similarly we have U(l, 1) = {A E SO+ (2,2) ) AJ = JA} c SO+ (2,2) and the 
embedding 

U(l, 1) c SO+(2,2) q SO+(2,3) 

We decompose Be (4,l) and 50 (2,3) into &(4, 1) = u(2) @ml and BO (2,3) = ~(1, 1) @m2, 
where ml is the orthogonal complement of u(2) in 50 (4,l) with respect to tbe Killing form 
of &(4,1) and rn2 is the orthogonal complement of u(l,l) in $0(2,3) with respect to 
the Killing form of 50(2,3). The restrictions of the negative of the corresponding Killing 
forms to ml and m2 induce invariant metrics on SO+(4,1)/U(2) and SO+(2,3)/U(l,l), 
respectively. These metrics are Einstein metrics and admit exactly one non-isotropic Killing 
spinor for each of the possible Killing numbers. Both spaces are diffeomorphic to @P2,‘. 
We can think of SO+(4,1)/U(2) as the twistor space of S4,‘/Z2 = SO+(4,1)/SO(4) and 
of SO+ (2,3)/ U (1,l) as the twistor space of the sphere S2,2. Note that the Einstein metrics 
with Killing spinors are not the U(2,2)-homogeneous Kalrler-Einstein metric on CP2*‘. 
They arise from this Kalrler-Einstein metric by resealing the fibres over S4,0/Z2 and S2,2, 
respectively. Tbe fibres are spacelike in the first case and timelike in the second case. In 
particular, SO+(4,1)/U(2) and SO+(2,3)/U(l,l) arenotisometric. 

Spin(2,2). We denote by B the Killing form of spin (2,2). Let ml be the Lie algebra of 
Spin(2,l) c Spin(2,2) and m2 its orthogonal complement with respect to B. Then -B Im, 

-3B Imz induces a left-invariant Einstein metric on Spin(2,2) with a one-dimensional 
non-isotropic space of Killing spinors for each of both possible Killing numbers. 

3.3.2. Pseudo-Riemunnian manifolds of signature (3,3) 
Consider now R6 = Span{et , e2, eg, eg, eg, e7) C R7 with pseudo-Euclidean product 

gs,s = g4,s ln6. We may restrict the real Spin(4,3)-representation to Spin(3,3) and obtain 
the real spinor representation As3 of Spin(3, 3). 
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The multiplication of spinors by the volume form of (I@, g3.3) defines now a map J * on 
As,3 with (JA)2 = 1. J* anti-commutes with the Clifford multiplication, i.e. X. J’(e) = 
-J*(X f $) for any X E l@. We have J* = -o @ t @ t with respect to the standard 
basis @I, . . . , @s. Now let (F3,3 , h) be a pseudo-Riemannian manifold of signature (3,3). 
J* defines a map Js on the spinor bundle SF of F3v3. We have VJ’ = 0. Assume now 
that F3,3 admits a Killing spinor p # 0 with Killing number h. Then obviously J’(p) is a 
Killing spinor with Killing number -h. 

U(2, 1)/U(l) x SO+(l, 1) x U(1). The embedding of U(1) x SO+ (1,l) xU(1) into 
U(2, 1) is given by 

U(1) x So+(l, 1) x U(1) c-, U(2, 1) 

There exist two homogeneous Einstein metrics on U(2,1)/U(l) x SO+(l,l) x U(1). The 
one induced by the Killing form of U(2, 1) admits a one-dimensional non-isotropic space of 
Killing spinors foreachofbothpossible Killing numbers. U(2,1)/U(l) x SO+(l, 1) x U(1) 
is the reflector space of CP”‘. 

GL+(3,[W)/R+ x R+ x [w+. The embedding of R+ x R+ x [w+ into GL+(3,R) is given 

by 

[W+ x R+ x Iw+ L) GL+(3,R) 

6-1, r2, r3) f--+ dMrl, r2, t-3). 

There exist two homogeneous Einstein metrics on GL+(3,1W)/R+ x Iw+ x [w+. The one 
induced by the Killing form of gI(3,R) admits a one-dimensional non-isotropic space of 
Killing spinors for each of both possible Killing numbers. GLf(3,R)/!R+ x lR+ x Iw+ is a 
double covering of the reflector space of SL(3,lR)/GL+(2,&. 

SO+(2,3)/GL+(2,rW). 
Here we consider SO+(3,2) as the connected component of the isometry group of 

(I@, g3,2), where now g3,2 is given with respect to the standard basis by the diagonal 
matrix diag(-1, 1, -1, 1, -1). GL+(2) is embedded in SOf(2,3) in the following way: 

GL+(2,R) cf SO+(3,2) 

N-A. (i (+ 8) *A-‘, 

where 

A= and A’ = -$ 

1 0 -1 0 
10 10 
0 1 0 -1 
010 1 



I. Kath/Joumul of Geometry and Physics 27 (1998) 155-177 175 

S 0 + (2,3) / G L+ (2) admits two homogeneous Einstein metrics. The one which is induced 
by the restriction of the negative of the Killing form of 50(2,3) onto the orthogonal comple- 
ment of gI(2) in 80(2,3) admits a one-dimensional non-isotropic space of Killing spinors 
for each of both possible Killing numbers. SO+(2,3)/GL+(2,R) is the reflector space of 
S&2 

Spin(3,l). We denote by B the Killing form of spin(3,l). Let ml be the Lie algebra of 
Spin(3) c Spin(3,l) and m2 its orthogonal complement with respect to B. Then -B I,,,, 
-3B I,,,* induces a left-invariant Einstein metric on Spin(3,l) with a one-dimensional non- 
isotropic space of Killing spinors for each of both possible Killing numbers. 

3.3.3. Construction of warped products with Killing spinors 
Let(F , 4,2 h) be a pseudo-Kemannian spin manifold of signature (4,2) with spin structure 

QF and spinor bundle SF. Furthermore, let Z = (a, b) S lF! be an open interval and g E 
P(Z, (0,oo)) be a smooth positive function. We consider the warped product 

(M4,3, g) := F4,2 x0 I := (F4,2 x I, a(t)h @ dt2) 

Denote by 7~ : F4,2 x Z -+ F4,2 the projection. Let 0 be that spin structure of (M4,3, g) 
whose Spin(n - 1)-reduction withrespect to e = a/at restricted to any fibre F4,2 x {t} yields 
that spin structure of (F4,2, a(t)h) which is conformally equivalent to the spin structure 
Q,c of (F4,2, h). The spinor bundle S of (M4,3 , g) can be identified with the bundle YC * SF 

bY 

r*sF G= S = O XSpin(43) Ad,3 

llr = [4, u(x, t>l- G = ii, u(x, t>l, 

where @ denotes that element of gcx,r) which corresponds to q E ( Q,v)~ relative to the 
conformal equivalence of Q F and 0 1 p.2 x trJ. For a section @ E r(x*S~) we denote by 
et E r ( SF) the spinor field I& (x) := + (x, t) . Furthermore, for a vector field X on F4v2 
let 2 be the vector field x(x, t) := a(t)-‘/2X(x) on A44,3. Then the following formulae 
for the Clifford multiplication and the spinor derivative hold: 

X(x, t). @(x7 t> = X(x) * Ilrt(x), (15) 
e. 3 = - Jy+, (16) 

Vi?++ = a(t)-“%& - zff 1 -l(+Q.& (17) 

r 
v$ = z@. (18) 

Theorem 3.2. Let q”+ and p”- := Js(q+) be Killing spinors on F4,2 with Killing numbers h 
and -A., respectively. We may assume h > 0. Denote by II/+ and $- the sections $r+ (x, t) = 
cos(ht)qP+(y)-sin(At)q-(x) and+-@, t) = sin(ht)v+(x)-cos(ht)q-(x) ofn*S~. Then 
@ -+ and $- are Killing spinors on F4,2 xCOS2(2hf) (-n/4h, ~c/4h) with Killing numbers A. 
and -A, respectively. 

Proo$ Follows by direct calculations using (15)-( 18). cl 
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Now we consider the warped product 

(M4,3, g) := F333 x0 I := (F3,3 x I, a(t)h - dt*) 

using a neutral six-dimensional pseudo-Riemannian manifold. Denote by rr : F3,3 x 
I + F3,3 the projection. (M4,3, g) admits a spin structure Q such that the Spin(3,3)- 
reduction of Q with respect to 6 = a/at restricted to any fibre F3,3 x {t} yields that 
spin structure of ( F3v3, a(t)h) which is conformally equivalent to the spin structure QF of 
( F3,3, h). As above the spinor bundle S of (M393 , g) can be identified with the bundle n * SF 
and now the following formulae for the Clifford multiplication and the spinor derivative 
hold. 

Theorem 3.3. Let now qO+ and qO- := Js(qO+) be Killing spinors on F3,3 with Killing 
numbers h and -h, respectively. We may assume h > 0. Denote by @+ and qk- the 
sections 9+(x, t) = cosh(ht)q+(n) - s&h(ht)q-(x) and q-(x, t) = sinh(ht)q+(x) + 
cosh(ht)q-(x) Of n*sF. Then p and @- are Killing spinors on F4,* x,,,~z~~~~~ R with 
Killing numbers h and -h, respectively. 
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