$G_{2(2)}^{*}$-Structures on pseudo-Riemannian manifolds

I. Kath ${ }^{1}$
Institut für Mathematik, Humboldt-Universität Berlin, Sitz: Ziegelstr,, 13 a 10099 Berlin, Germany

Received 25 September 1997

Abstract

We will give the definition and basic properties of nearly parallel $G_{2(2)}^{*}$-structures on pseudoRiemannian manifolds of signature $(4,3)$. In particular we explain the equivalence of their existence with that of Killing spinor fields. Furthermore, we will give first examples of pseudo-Riemannian manifolds of signature $(4,3)$ with Killing spinors. © 1998 Elsevier Science B.V.

Subj. Class.: Spinors and twistors
1991 MSC: 53C20, 81R25
Keywords: G-structures; Pseudo-Riemannian manifolds; Spinors

1. Introduction

This article relates to the paper of Th. Friedrich et al. [4] on nearly parallel G_{2}-structures. G_{2}-structures are topological reductions of the frame bundle of a seven-dimensional manifold to the exceptional group G_{2}. They can be described by 3 -forms of special algebraic type on the manifold. Since $G_{2} \subset S O(7)$ such a structure induces a Riemannian metric and in particular a Levi-Civita connection ∇ on the manifold. It is called nearly parallel if the associated 3-form ω^{3} satisfies $\left.\nabla_{Z} \omega^{3}=-2 \lambda(Z\lrcorner * \omega^{3}\right)$. The existence of such a 3-form is equivalent to the existence of a spin structure with a Killing spinor field.

Now we are interested in similar structures on pseudo-Riemannian manifolds, more exactly, on manifolds admitting a metric of signature $(4,3)$. There are two real connected non-compact groups of type G_{2}. The one with trivial centre denoted by $G_{2(2)}^{*}$ is a subgroup of $S O(4,3) . G_{2(2)}^{*}$ is one of the possible "exceptional" holonomy groups of non-symmetric irreducible pseudo-Riemannian manifolds [2].

[^0]The $\operatorname{Spin}(4,3)$-representation $\Delta_{4,3}$ has some algebraic properties similar to those of the $\operatorname{Spin}(7)$-representation Δ_{7}. In particular, both are real. Furthermore, while $\operatorname{Spin}(7)$ acts transitively on the sphere S^{7} with isotropy group G_{2} the action of the connected component $\operatorname{Spin}^{+}(4,3)$ of $\operatorname{Spin}(4,3)$ on the pseudo-Riemannian sphere in $\Delta_{4,3}$ is transitive with isotropy group $G_{2(2)}^{*}$. For a fixed spinor $\psi \neq 0$ in Δ_{7} the Clifford multiplication $X \longmapsto X \cdot \psi$ is an isomorphism from \mathbb{R}^{7} to the orthogonal complement of ψ. The same is true in $\Delta_{4,3}$ for any non-isotropic spinor ψ.

These properties will allow us to translate several results from the Riemannian case to signature $(4,3)$. We will give the definition and basic properties of nearly parallel $G_{2(2)}^{*}{ }^{-}$ structures. In particular, we explain the equivalence of their existence with that of Killing spinor fields. Furthermore, we will give first examples of pseudo-Riemannian spin manifolds of signature $(4,3)$ with Killing spinors.

Analogously to the Riemannian case we have a relation between pairs of Killing spinors and Sasakian structures and between triples of Killing spinors and 3-Sasakian structures on pseudo-Riemannian spin manifolds of signature $(4,3)$. This will be explained in a broader context in [10].

Notation. In the following $\mathbb{R}^{p, q}$ denotes the standard pseudo-Euclidean space of signature (p, q), i.e. $\mathbb{R}^{p, q}=\left(\mathbb{R}^{p+q}, g_{p, q}\right)$ where $g_{p, q}(x, y)=-\sum_{i=1}^{p} x_{i} y_{i}+\sum_{i=p+1}^{p+q} x_{i} y_{i}$. Similarly, $M^{p, q}$ denotes a pseudo-Riemannian manifold of signature (p, q).

2. The exceptional non-compact group $G_{2(2)}^{*}$

We consider the standard pseudo-Euclidean space $\mathbb{R}^{4,3}$ of signature $(4,3)$ with the standard basis $e_{1}, e_{2}, \ldots, e_{7}$ and define ε_{i} by $\varepsilon_{i}=g_{4,3}\left(e_{i}, e_{i}\right)$. The real Clifford algebra $\mathcal{C}_{4,3}=\operatorname{Cliff}\left(\mathbb{R}^{7},-g_{4,3}\right)$ is the algebra generated by $e_{1}, e_{2}, \ldots, e_{7}$ with the relations $e_{i}^{2}=$ $-\varepsilon_{i}, e_{i} e_{j}+e_{j} e_{i}=0$ if $i \neq j$. It is isomorphic to the direct sum $\mathbb{R}(8) \oplus \mathbb{R}(8)$ of algebras of real 8×8 matrices. We will use the isomorphism Φ which is defined by

$$
\begin{align*}
& \Phi: \mathcal{C}_{4,3} \longrightarrow \mathbb{R}(8) \oplus \mathbb{R}(8) \\
& e_{1} \longmapsto(\varepsilon \otimes \varepsilon \otimes \sigma, \varepsilon \otimes \varepsilon \otimes \sigma) \\
& e_{2} \longmapsto(-\sigma \otimes \sigma \otimes \tau,-\sigma \otimes \sigma \otimes \tau) \\
& e_{3} \longmapsto(-\sigma \otimes I \otimes \sigma,-\sigma \otimes I \otimes \sigma) \\
& e_{4} \longmapsto(\sigma \otimes \tau \otimes \tau, \sigma \otimes \tau \otimes \tau) \tag{1}\\
& e_{5} \longmapsto(-I \otimes \varepsilon \otimes \tau,-I \otimes \varepsilon \otimes \tau) \\
& e_{6} \longmapsto(-\tau \otimes \varepsilon \otimes \sigma,-\tau \otimes \varepsilon \otimes \sigma) \\
& e_{7} \longmapsto(I \otimes I \otimes \varepsilon,-I \otimes I \otimes \varepsilon),
\end{align*}
$$

where

$$
I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \sigma=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \tau=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \varepsilon=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) .
$$

Usually we will identify $\Phi\left(e_{i}\right)$ with e_{i}. The projection $p r_{1}$ of this isomorphism onto the first component restricted to $\operatorname{Spin}(4,3) \subset \mathcal{C}_{43}$ yields the $\operatorname{Spin}(4,3)$-representation on $\mathbb{R}^{8}=: \Delta_{4,3}$. Furthermore, this projection defines the Clifford multiplication of a vector $X \in \mathbb{R}^{4,3} \subset \mathcal{C}_{4,3}$ with a spinor $\psi \in \Delta_{4,3}$ which we will denote by $X \cdot \psi$. Let u and v be the vectors $u={ }^{t}(1,0), v={ }^{t}(0,1)$ and $\psi_{1}=u \otimes u \otimes u={ }^{t}(1,0, \ldots, 0), \psi \psi_{2}=u \otimes u \otimes v=$ ${ }^{t}(0,1, \ldots, 0), \ldots, \psi_{8}=v \otimes v \otimes v={ }^{t}(0, \ldots, 0,1)$ the standard basis of \mathbb{R}^{8}. We identify the Lie algebra of $\operatorname{Spin}(4,3)$ with $\operatorname{spin}(4,3)=\left\{\omega=\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid \omega_{i j} \in \mathbb{R}\right\} \subset \mathcal{C}_{4,3}$. Let $D_{i j}$ be the 8×8-matrix whose (i, j)-entry is ε_{j} and all of whose other entries are 0 . We set $E_{i j}=-D_{i j}+D_{j i}$. Using this notation $p r_{1} \circ \Phi$ becomes with respect to the basis $\psi_{1}, \ldots, \psi_{8}$

$$
\begin{align*}
& e_{1} \longmapsto-E_{18}-E_{27}+E_{36}+E_{45}, \\
& e_{2} \longmapsto E_{17}-E_{28}+E_{35}-E_{46}, \\
& e_{3} \longmapsto E_{16}+E_{25}+E_{38}+E_{47}, \\
& e_{4} \longmapsto-E_{15}+E_{26}+E_{37}-E_{48}, \tag{2}\\
& e_{5} \longmapsto E_{13}-E_{24}-E_{57}+E_{68}, \\
& e_{6} \longmapsto E_{14}+E_{23}+E_{58}+E_{67}, \\
& e_{7} \longmapsto-E_{12}-E_{34}+E_{56}+E_{78} .
\end{align*}
$$

The following two bilinear forms on $\Delta_{4,3}$ are related to the $\operatorname{Spin}(4,3)$-representation. On the one hand we have the standard inner product of \mathbb{R}^{8} which we denote by $($,$) . It is invariant$ with respect to the maximal compact subgroup $\left((\operatorname{Pin}(4) \times \operatorname{Pin}(3)) / \mathbb{Z}_{2}\right) \cap \operatorname{Spin}(4,3)$ of $\operatorname{Spin}(4,3)$ and has the property $(X \cdot \varphi, \psi)+(\varphi, \theta(X) \cdot \psi)=0$ for all $X \in \mathbb{R}^{4,3}$ and $\varphi, \psi \in$ $\Delta_{4,3}$, where $\theta: \mathbb{R}^{4,3} \longrightarrow \mathbb{R}^{4,3}$ denotes the reflection with respect to $\operatorname{span}\left\{e_{5}, e_{6}, e_{7}\right\}$. On the other hand we consider the product \langle,\rangle_{Δ} of signature $(4,4)$ defined by $\langle\varphi, \psi\rangle_{\Delta}:=$ $\left(e_{1} e_{2} e_{3} e_{4} \varphi, \psi\right)$. It is invariant with respect to the connected component $\operatorname{Spin}^{+}(4,3)$ of $1 \in \operatorname{Spin}(4,3)$ and the equation $\langle X \cdot \varphi, \psi\rangle_{\Delta}+\langle\varphi, X \cdot \psi\rangle_{\Delta}=0$ holds for all $X \in \mathbb{R}^{4,3}$ and $\varphi, \psi \in \Delta_{4,3}$. The matrix of \langle,\rangle_{Δ} with respect to the standard basis $\psi_{1}, \ldots, \psi_{8}$ equals diag $(-1,-1,-1,-1,1,1,1,1)$. In particular, we obtain an embedding $\operatorname{Spin}(4,3)$ $\subset S O(4,4)$.

Because of the $\operatorname{Spin}^{+}(4,3)$-invariance of \langle,\rangle_{Δ} the group $\operatorname{Spin}^{+}(4,3)$ acts on $\mathcal{M}_{c}=\{\psi \in$ $\left.\Delta_{4,3} \mid\langle\psi, \psi\rangle_{\Delta}=c\right\}, c \in \mathbb{R}$. This action is transitive for $c \neq 0$ and has two orbits for $c=0$.

Proposition 2.1. The action of $\operatorname{Spin}^{+}(4,3)$ on

$$
S^{4,3}:=\left\{\psi \in \Delta_{4,3} \mid\langle\psi, \psi\rangle_{\Delta}=1\right\}
$$

is transitive. The same is valid for

$$
H^{3,4}:=\left\{\psi \in \Delta_{4,3} \mid\langle\psi, \psi\rangle_{\Delta}=-1\right\} .
$$

The orbits of the $\operatorname{Spin}(4,3)^{+}$-action on

$$
\mathcal{C}:=\left\{\psi \in \Delta_{4,3} \mid\langle\psi, \psi\rangle_{\Delta}=0\right\}
$$

are $\{0\}$ and $\mathcal{C} \backslash\{0\}$.

Proof. We consider the subspace $\mathbb{R}^{4,1}=\operatorname{span}\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{6}\right\}$ of $\mathbb{R}^{4,3}$. The corresponding spin group $\operatorname{Spin}^{+}(4,1) \subset \operatorname{Spin}^{+}(4,3)$ equals $S p(1,1)$ and $\Delta_{4,3}$ is the standard representation of $S p(1,1)$ on $\mathbb{R}^{4,4}=\mathbb{H}^{1,1}$. The assertion now follows from the corresponding properties of the $S p(1,1)$-action on $\mathbb{-}^{1,1}$.

Corollary 2.1.

1. The isotropy group $H(\psi)=\left\{h \in \operatorname{Spin}^{+}(4,3) \mid h \psi=\psi\right\}$ of a non-isotropic spinor $\psi \in \Delta_{4,3}\left(\right.$ i.e. $\left.\langle\psi, \psi\rangle_{\Delta} \neq 0\right)$ with respect to the $\operatorname{Spin}^{+}(4,3)$-action is a connected non-compact group of type G_{2} with fundamental group \mathbb{Z}_{2}.
2. The Lie algebra of the isotropy group of an isotropic spinor is the semidirect sum of a six-dimensional nilpotent algebra and $\mathfrak{\xi l}(3, \mathbb{R})$.

Proof.

1. Because of the transitivity of the $\operatorname{Spin}^{+}(4,3)$-action it suffices to prove that $H\left(\psi_{1}\right)$ has the required properties. We first consider the Lie algebra $\mathfrak{h}\left(\psi_{1}\right)$ of this group. Because of (2) it equals

$$
\left.\begin{array}{rl}
\mathfrak{h}\left(\psi_{1}\right)=\left\{\sum_{i<j} \omega_{n} b i j e_{i} e_{j} \mid-\omega_{12}-\omega_{34}+\omega_{56}=0\right. \\
& \omega_{13}-\omega_{24}-\omega_{67}=0,-\omega_{14}-\omega_{23}+\omega_{57}=0 \\
& \omega_{16}+\omega_{25}-\omega_{37}=0, \omega_{15}-\omega_{26}-\omega_{47}=0 \\
& \omega_{17}+\omega_{36}+\omega_{45}=0, \omega_{27}+\omega_{35}-\omega_{46}=0 \tag{3}
\end{array}\right\}
$$

It is spanned by $X_{1}=e_{1} e_{2}-e_{3} e_{4}, Y_{1}=e_{3} e_{4}+e_{5} e_{6}, X_{2}=e_{1} e_{3}+e_{2} e_{4}, Y_{2}=$ $e_{2} e_{4}-e_{6} e_{7}, X_{3}=e_{1} e_{4}-e_{2} e_{3}, Y_{3}=e_{2} e_{3}+e_{5} e_{7}, X_{4}=e_{1} e_{6}-e_{2} e_{5}, Y_{4}=e_{1} e_{6}+$ $e_{3} e_{7}, X_{5}=e_{2} e_{6}+e_{1} e_{5}, Y_{5}=e_{2} e_{6}-e_{4} e_{7}, X_{6}=e_{1} e_{7}-e_{3} e_{6}, Y_{6}=e_{1} e_{7}-$ $e_{4} e_{5}, X_{7}=e_{2} e_{7}+e_{4} e_{6}$ and $Y_{7}=e_{2} e_{7}-e_{3} e_{5}$. Using the isomorphism of $\operatorname{spin}(4,3)$ and $\mathfrak{5 0}(4,3)$, we see that the Killing form on $\mathfrak{G}\left(\psi_{1}\right)$ is non-degenerate and has index 6. Therefore, $\mathfrak{h}\left(\psi_{1}\right)$ is a non-compact real form of the semisimple Lie algebra $\mathfrak{h}\left(\psi_{1}\right)^{\sigma}$. Furthermore, one reads from the relations

$$
\begin{array}{ll}
& {\left[X_{1}, Y_{1}\right]=0,} \\
{\left[X_{1}, X_{2}\right]=4 X_{3},} & {\left[X_{1}, Y_{2}\right]=2 X_{3},} \\
{\left[X_{1}, X_{3}\right]=-4 X_{2},} & {\left[X_{1}, Y_{3}\right]=2 X_{2},} \\
{\left[X_{1}, X_{i}\right]=-2 X_{i+1},} & {\left[X_{1}, Y_{i}\right]=-2 Y_{i+1} \quad(i=4,6),} \\
{\left[X_{1}, X_{j}\right]=2 X_{j-1},} & {\left[X_{1}, Y_{j}\right]=2 Y_{j-1} \quad(j=5,7),} \\
{\left[Y_{1}, X_{2}\right]=-2 X_{3},} & {\left[Y_{1}, Y_{2}\right]=4 Y_{3},} \\
{\left[Y_{1}, X_{3}\right]=2 X_{2},} & {\left[Y_{1}, Y_{3}\right]=-4 Y_{2},}
\end{array}
$$

that X_{1} and Y_{1} commute, but no element out of span $\left\{X_{1}, Y_{1}\right\}$ commutes with both X_{1} and Y_{1}, i.e $\mathfrak{G}\left(\psi_{1}\right)^{\mathbb{C}}$ has rank 2 and thus it must be simple. Since its dimension is 14 it is of type G_{2}. There is only one non-compact real form of the complex Lie
algebra of type G_{2} (see e.g. [12]). Now we determine $H\left(\psi_{1}\right)$. Recall that there are two non-compact connected groups of type G_{2} (see [12]). The simply connected one has centre \mathbb{Z}_{2}. Because of the transitivity of the $\operatorname{Spin}^{+}(4,3)$-action $H^{3,4}$ is diffeomorphic to the homogeneous space $\operatorname{Spin}^{+}(4,3) / H\left(\psi_{1}\right)$. Using the exact homotopy sequence of this fibration we conclude from $\pi_{2}\left(H^{3,4}\right)=\pi_{1}\left(H^{3,4}\right)=\pi_{0}\left(H^{3,4}\right)=0$ and from $\pi_{1}\left(\operatorname{Spin}^{+}(4,3)\right)=\mathbb{Z}_{2}, \pi_{0}\left(\operatorname{Spin}^{+}(4,3)\right)=0$ that $H\left(\psi_{1}\right)$ is connected and has fundamental $\operatorname{group} \pi_{1}\left(H\left(\psi_{1}\right)\right)=\mathbb{Z}_{2}$.
2. We calculate the Lie algebra $\mathfrak{G}\left(\psi_{1}+\psi_{5}\right)$ of the isotropy group of $\psi_{1}+\psi_{5}$ and obtain using (2)

$$
\begin{align*}
& \mathfrak{h}\left(\psi_{1}+\psi_{5}\right) \\
& =\left\{\begin{array}{l}
\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid \\
\omega_{16}+\omega_{25}-\omega_{37}=0, \\
\\
\omega_{15}-\omega_{26}-\omega_{12}+\omega_{56}=0, \omega_{34}-\omega_{47}=0, \\
\\
\omega_{27}+\omega_{23}+\omega_{35}-\omega_{57}=0, \omega_{14}+\omega_{46}=0, \\
\\
\left.\omega_{13}+\omega_{17}+\omega_{36}-\omega_{67}=0, \omega_{24}+\omega_{45}=0\right\}
\end{array} .\right.
\end{align*}
$$

Hence, $\mathfrak{h}\left(\psi_{1}+\psi_{5}\right)$ is the semidirect sum of the null space \mathfrak{n} of its Killing form spanned by $e_{3} e_{4}+e_{4} e_{7}, e_{2} e_{4}-e_{4} e_{5}, e_{1} e_{4}-e_{4} e_{6}, e_{6} e_{7}-e_{1} e_{3}+e_{1} e_{7}+e_{3} e_{6}, e_{1} e_{2}-$ $e_{5} e_{6}+e_{1} e_{5}-e_{2} e_{6}, e_{2} e_{3}-e_{5} e_{7}-e_{2} e_{7}-e_{3} e_{5}$ and the eight-dimensional subalgebra \mathfrak{p} spanned by $e_{1} e_{6}+e_{3} e_{7}, e_{1} e_{6}-e_{2} e_{5}, e_{1} e_{2}+e_{5} e_{6}, e_{1} e_{5}+e_{2} e_{6}, e_{1} e_{3}+e_{6} e_{7}, e_{1} e_{7}-$ $e_{3} e_{6}, e_{2} e_{3}+e_{5} e_{7}, e_{2} e_{7}-e_{3} e_{5}$. Obviously, n is nilpotent. The Killing form restricted to \mathfrak{p} is non-degenerate and has index 3 . Consequently, \mathfrak{p} equals $5 l(3, \mathbb{R})$.

Definition 2.1. $G_{2(2)}^{*}:=H\left(\psi_{1}\right)$.
Remark. In this notation $H^{3,4}$ is diffeomorphic to $\operatorname{Spin}^{+}(4,3) / G_{2(2)}^{*}$.
Corollary 2.2. For a fixed spinor $\psi \in \Delta_{4,3}$ the kernel of the homomorphism

$$
\begin{aligned}
\mathbb{R}^{4,3} & \longrightarrow\{\psi\}^{\perp} \subset \Delta_{4,3} \\
X & \longmapsto X \cdot \psi
\end{aligned}
$$

(i) is trivial iff $\psi \neq 0$ is non-isotropic;
(ii) has dimension 3 iff $\psi \neq 0$ is isotropic.

Proof. Using (1) assertions (i) and (ii) can be easily verified for $\psi=\psi_{1}$ and $\psi=\psi_{1}+\psi_{5}$, respectively. Hence, they hold for any $\psi \neq 0$.

Now we consider the universal covering $\lambda: \operatorname{Spin}(4,3) \longrightarrow S O(4,3)$. Because of $-1 \notin$ $G_{2(2)}^{*}$ there is an isomorphism from $G_{2(2)}^{*}$ onto a subgroup of $S O(4,3)$, which we also denote
by $G_{2(2)}^{*}$. We now describe this group using 3-forms on \mathbb{R}^{7}. The key point is a special relation between non-isotropic spinors in $\Delta_{4,3}$ and generic 3-forms in $\Lambda^{3}\left(\mathbb{R}^{7}\right)$.

We observe that for $X, Y \in \mathbb{R}^{4,3}$ the spinors ψ and $Y X \psi+g_{4,3}(X, Y) \psi$ are orthogonal to each other. By Corollary 2.2 we can define a (2,1)-tensor A_{ψ} by

$$
\begin{equation*}
Y X \psi+g_{4,3}(X, Y) \psi=A_{\psi}(Y, X) \psi \tag{5}
\end{equation*}
$$

A_{ψ} has the following properties:
(1) $A_{\psi}(X, Y)=-A_{\psi}(Y, X)$,
(2) $g_{4,3}\left(Y, A_{\psi}(Y, X)\right)=0$,
(3) $A_{\psi}\left(Y, A_{\psi}(Y, X)\right)=-\|Y\|_{4,3}^{2} X+g_{4,3}(X, Y) Y$.

It defines a 3-form ω_{ψ}^{3} by $\omega_{\psi}^{3}(X, Y, Z)=g_{4,3}\left(X, A_{\psi}(Y, Z)\right)$.
Clearly,

$$
\begin{equation*}
\omega_{\alpha \psi}^{3}=\omega_{\psi}^{3}, \quad \alpha \in \mathbb{R}, \quad \alpha \neq 0 \tag{6}
\end{equation*}
$$

In particular, if $\psi=\psi_{1}$ then a direct calculation yields $\omega_{\psi_{1}}^{3}=\omega_{0}^{3}$, where ω_{0}^{3} is given by

$$
\begin{align*}
\omega_{0}^{3}= & -e_{1} \wedge e_{2} \wedge e_{7}-e_{1} \wedge e_{3} \wedge e_{5}+e_{1} \wedge e_{4} \wedge e_{6} \\
& +e_{2} \wedge e_{3} \wedge e_{6}+e_{2} \wedge e_{4} \wedge e_{5}-e_{3} \wedge e_{4} \wedge e_{7}+e_{5} \wedge e_{6} \wedge e_{7} \tag{7}
\end{align*}
$$

Definition 2.2. Let ω^{3} be a 3-form on \mathbb{R}^{7}. Furthermore let X_{1}, \ldots, X_{7} be an arbitrary pseudo-orthonormal basis of ($\left.\mathbb{R}^{7}, g_{4,3}\right)$. We define a 4-form σ^{4} by $\sigma^{4}=\sum_{i=1}^{7} \varepsilon_{i}\left(X_{i}-\omega^{3}\right)$ $\wedge\left(X_{i}-\omega^{3}\right)$ which does not depend on the chosen basis. We will say that ω^{3} defines the orientation of \mathbb{R}^{7} if $\omega^{3} \wedge \sigma^{4}$ is a positive multiple of the volume form of \mathbb{R}^{7}. Furthermore, we will say that ω^{3} defines the space and time orientation of $\left(\mathbb{R}^{7}, g_{4,3}\right)$ if it defines the orientation of \mathbb{R}^{7} and if $\omega^{3}\left(X_{5}, X_{6}, X_{7}\right)>0$ for any positively space and time oriented pseudo-orthonormal basis X_{1}, \ldots, X_{7}.

Theorem 2.1. There is a one-one correspondence between $H^{3,4} /\{1,-1\}$ and those $\omega^{3} \in$ $\Lambda^{3}\left(\mathbb{R}^{7}\right)$ which define the space and time orientation of $\left(\mathbb{R}^{7}, g_{4,3}\right)$ and for which the bilinear map A defined by $\omega^{3}(X, Y, Z)=g_{4,3}(X, A(Y, Z))$ has properties (1)-(3).

Analogously, there is a one - one correspondence between $S^{4,3} /\{1,-1\}$ and those $\omega^{3} \in$ $\Lambda^{3}\left(\mathbb{R}^{7}\right)$ which define the inverse space and time orientation of $\left(\mathbb{R}^{7}, g_{4,3}\right)$ and for which the bilinear map A defined by $\omega^{3}(X, Y, Z)=g_{4,3}(X, A(Y, Z))$ has properties (1)-(3).

Proof. Let $\psi \neq 0$ be a fixed non-isotropic spinor and ω_{ψ}^{3} the associated 3-form. With the same notation as above we obtain $\omega_{\psi}^{3} \wedge \sigma_{\psi}^{4}=42 e_{1} \wedge \cdots \wedge e_{7}$. Hence, ω_{ψ}^{3} defines the orientation of \mathbb{R}^{7}.

Now fix a spinor ψ with $\langle\psi, \psi\rangle_{\Delta}=-1$ and let X_{1}, \ldots, X_{7} be a positively space and time oriented pseudo-orthonormal basis. From the definition of A_{ψ} we know that $g_{4,3}\left(A_{\psi}\left(X_{5}, X_{6}\right), A_{\psi}\left(X_{5}, X_{6}\right)\right)=1$ and therefore $A_{\psi}\left(X_{5}, X_{6}\right) \notin\left\{X_{5}, X_{6}, X_{7}\right\}^{\perp}$. Since $A_{\psi}\left(X_{5}, X_{6}\right) \perp X_{5}, X_{6}$ the vectors $A_{\psi}\left(X_{5}, X_{6}\right)$ and X_{7} cannot be orthogonal. Hence,
$\omega_{\psi}^{3}\left(X_{5}, X_{6}, X_{7}\right) \neq 0$. Since on the other hand $\omega_{\psi_{1}}^{3}\left(e_{5}, e_{6}, e_{7}\right)=1$ we obtain $\omega_{\psi}^{3}\left(X_{5}, X_{6}\right.$, $\left.X_{7}\right)>0$. Hence ω_{ψ}^{3} defines the space and time orientation of $\left(\mathbb{R}^{7}, g_{4,3}\right)$.

Vice versa, let A be a (2,1)-tensor on \mathbb{R}^{7} which has the properties (1)-(3). Then A defines a 3-form $\omega^{3}=g_{4,3}(\cdot, A(\cdot, \cdot))$. We can define σ^{4} in the same way as above. From properties (1)-(3). we conclude $\omega^{3} \wedge \sigma^{4} \neq 0$. Suppose that ω^{3} defines the orientation of \mathbb{R}^{7}. Furthermore, from properties (1)-(3) we deduce as above that $\omega^{3}\left(X_{5}, X_{6}, X_{7}\right) \neq 0$ for any oriented pseudo-orthonormal basis X_{1}, \ldots, X_{7}. Suppose that ω^{3} defines the space and time orientation of $\left(\mathbb{R}^{7}, g_{4,3}\right)$. Consider now the subspace

$$
E=\left\{\psi \subset \Delta_{4,3} \mid X Y \psi=-g_{4,3}(X, Y) \psi+A(X, Y) \psi\right\}
$$

Then E is one-dimensional and spanned by a spinor ψ_{0} with $\left\langle\psi_{0}, \psi_{0}\right\rangle_{\Delta}=-1$. In particular, $\omega^{3}=\omega_{\psi_{0}}$.

In particular, since we have for $g \in \operatorname{Spin}^{+}(4,3)$

$$
\omega_{g \psi}^{3}=\left(\lambda\left(g^{-1}\right)\right)^{*} \omega_{\psi}
$$

we conclude:

Corollary 2.3. The image of $G_{2(2)}^{*}$ with respect to $\lambda: \operatorname{Spin}(4,3) \longmapsto S O(4,3)$ equals

$$
G_{2(2)}^{*}=\left\{A \in S O^{+}(4,3) \mid A^{*} \omega_{0}=\omega_{0}\right\}
$$

Note that $A \in S O(4,3)$ and $A^{*} \omega_{0}=\omega_{0}$ imply $A \in S O^{+}(4,3)$ since ω_{0} defines a space and time orientation.

On the other hand the equation $A^{*} \omega_{0}^{3}=\omega_{0}^{3}$ for $A \in G L(7)$ implies $A \in S O(4,3)$. The proof is similar to that in the G_{2}-case (see [2]). Consequently, we obtain

$$
G_{2(2)}^{*}=\left\{A \in G L(7) \mid A^{*} \omega_{0}^{3}=\omega_{0}^{3}\right\}
$$

Next we investigate in the same way as above the action of $\operatorname{Spin}^{+}(4,3)$ on some of the manifolds

$$
\begin{aligned}
& V\left(\delta_{1}, \ldots, \delta_{l}\right)=\left\{\left(\varphi_{1}, \ldots, \varphi_{l}\right) \mid \varphi_{i} \in \Delta_{4,3}(i=1, \ldots, l),\right. \\
& \\
& \quad\left\langle\varphi_{i}, \varphi_{i}\right\rangle_{\Delta}=\delta_{i}(i=1, \ldots, l), \\
& \\
& \left.\left\langle\varphi_{i}, \varphi_{j}\right\rangle_{\Delta}=0 \text { if } i \neq j(i, j=1, \ldots, l)\right\},
\end{aligned}
$$

where $\delta_{i}=-1$ for $i=1, \ldots, k(k \leq l)$ and $\delta_{i}=1$ for $i=k+1, \ldots, l$.
Proposition 2.2. The action of $\operatorname{Spin}^{+}(4,3)$ on $V(-1,-1), V(-1,1)$ and $V(1,1)$ is transitive.

Proof. Since $e_{1} e_{5} \in \operatorname{Spin}(4,3)$ maps $S^{4,3}$ one-to-one onto $H^{3,4}$ and

$$
\begin{equation*}
\left(e_{1} e_{5}\right) \operatorname{Spin}^{+}(4,3)\left(e_{1} e_{5}\right)^{-1}=\left(e_{1} e_{5}\right) \operatorname{Spin}^{+}(4,3)\left(-e_{5} e_{1}\right)=\operatorname{Spin}^{+}(4,3) \tag{8}
\end{equation*}
$$

the situation on $V(-1,-1)$ and $V(1,1)$ is essentially the same.

We calculate the dimension of the isotropy group $H\left(\varphi_{1}, \varphi_{2}\right)$ of an arbitrary pair (φ_{1}, φ_{2}) with $\left\langle\varphi_{1}, \varphi_{1}\right\rangle_{\Delta}=-1,\left\langle\varphi_{1}, \varphi_{2}\right\rangle_{\Delta}=0$ and $\varphi_{2} \neq 0$. Clearly (see Proposition 2.1), we may assume $\varphi_{1}=\psi_{1}$. Next we shall explain why we can assume furthermore $\varphi_{2}=x_{2} \psi_{2}+x_{5} \psi_{5}$. The isotropy group $G_{2(2)}^{*}$ of ψ_{1} contains $S O(3)$ and $S U(2)$ as subgroups. The Lie algebra $\mathfrak{g o}(3) \subset \mathfrak{g o}(4,4)$ is spanned by $e_{3} e_{4}+e_{5} e_{6}=2\left(-E_{34}-E_{56}\right), e_{2} e_{4}-e_{6} e_{7}=$ $2\left(E_{24}-E_{57}\right), e_{2} e_{3}+e_{5} e_{7}=2\left(-E_{23}+E_{67}\right)$ and $\mathfrak{s u}(2) \subset \mathfrak{B} \mathfrak{D}(4,4)$ by $e_{1} e_{2}-e_{3} e_{4}=$ $2\left(E_{56}-E_{78}\right), e_{1} e_{3}+e_{2} e_{4}=-2\left(E_{57}+E_{68}\right), e_{1} e_{4}-e_{2} e_{3}=2\left(E_{58}-E_{67}\right)$. Therefore we can first achieve that $\varphi_{2}=x_{2} \psi_{2}+x_{5} \psi_{5}+x_{6} \psi_{6}+x_{7} \psi_{7}+x_{8} \psi_{8}$ using the action of $S O(3) \subset G_{2(2)}^{*}$ and after that $\varphi_{2}=x_{2} \psi_{2}+x_{5} \psi_{5}$ using $S U(2)$.

Thus, let φ_{2} be $x_{2} \psi_{2}+x_{5} \psi_{5}$. Eqs. (2) imply that the Lie algebra $\mathfrak{G}\left(\psi_{1}, x_{2} \psi_{2}+x_{5} \psi_{5}\right)$ of the isotropy group of ($\psi_{1}, x_{2} \psi_{2}+x_{5} \psi_{5}$) equals

$$
\begin{align*}
& \mathfrak{h}\left(\psi_{1}, x_{2} \psi_{2}+x_{5} \psi_{5}\right) \\
& \qquad\left\{\begin{array}{c}
\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid-\omega_{12}-\omega_{34}+\omega_{56}=0,\right. \\
\\
\omega_{13}-\omega_{24}-\omega_{67}=0, \omega_{14}+\omega_{23}-\omega_{57}=0, \\
\\
-\omega_{16}-\omega_{25}+\omega_{37}=0, \omega_{15}-\omega_{26}-\omega_{47}=0, \\
\omega_{17}+\omega_{36}+\omega_{45}=0, \omega_{27}+\omega_{35}-\omega_{46}=0, \\
\\
x_{5} \omega_{47}=0, x_{2} \omega_{47}=0 \\
x_{2} \omega_{57}-x_{5} \omega_{45}=0, x_{2} \omega_{67}-x_{5} \omega_{46}=0, \\
\\
x_{5} \omega_{34}+x_{2} \omega_{37}=0, x_{5} \omega_{24}+x_{2} \omega_{27}=0, \\
\\
x_{5} \omega_{14}+x_{2} \omega_{17}=0
\end{array}\right\} .
\end{align*}
$$

Since not $x_{2}=x_{5}=0$ the dimension of the Lie algebra $\mathfrak{h}\left(\varphi_{1}, \varphi_{2}\right)$ of $H\left(\varphi_{1}, \varphi_{2}\right)$ equals 8 and the one of the orbit of $\left(\varphi_{1}, \varphi_{2}\right)$ equals 13 . Hence, all orbits are open sets and the action of $\operatorname{Spin}^{+}(4,3)$ is transitive.

Corollary 2.4. The isotropy group of a pair $\left(\varphi_{1}, \varphi_{2}\right)$ of pseudo-orthonormal spinors with respect to the $\operatorname{Spin}^{+}(4,3)$-action equals
(1) $\operatorname{SU}(1,2)$ if $\left(\varphi_{1}, \varphi_{2}\right) \in V(-1,-1)$ or $V(1,1)$,
(2) $S L(3, \mathbb{R})$ if $\left(\varphi_{1}, \varphi_{2}\right) \in V(-1,1)$.

Proof. The Lie algebra of $H\left(\psi_{1}, \psi_{2}\right)$ equals

$$
\mathfrak{h}\left(\psi_{1}, \psi_{2}\right)=\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid-\omega_{12}-\omega_{34}+\omega_{56}=0,\left\{\begin{array}{l}
\omega_{13}-\omega_{24}=0, \omega_{14}+\omega_{23}=0, \omega_{16}+\omega_{25}=0, \\
\omega_{15}-\omega_{26}=0, \omega_{36}+\omega_{45}=0, \omega_{35}-\omega_{46}=0,
\end{array}\right.\right.
$$

$$
\begin{equation*}
\left.\omega_{i 7}=0, i=1, \ldots, 6\right\} \tag{10}
\end{equation*}
$$

As a subalgebra of $\mathfrak{5 0}(4,4)$ it is spanned by $E_{34}+E_{78}, E_{56}-E_{78}, E_{57}+E_{68}, E_{58}$ $E_{67}, E_{37}+E_{48}, E_{38}-E_{47}, E_{35}+E_{46}, E_{36}-E_{45}$ and equals therefore $\mathfrak{\lessgtr u}(1,2)$ where $S U(1,2) \subset S U(2,2) \subset S O(4,4)$ is embedded in the usual way. We conclude that the connected component of $H\left(\psi_{1}, \psi_{2}\right)$ must be $S U(1,2)$. On the other hand $V(-1,-1)$ is simply connected. This follows from the exact homotopy sequence of the fibration $\mathrm{SO}^{+}(2,4) \xrightarrow{i}$ S $O^{+}(4,4) \longrightarrow V(-1,-1)$. Using now the exact homotopy sequence of $H\left(\psi_{1}, \psi_{2}\right) \longrightarrow$ $\operatorname{Spin}^{+}(4,3) \longrightarrow V(-1,-1)$ we deduce from $\pi_{1}(V(-1,-1))=0$ that $H\left(\psi_{1}, \psi_{2}\right)$ is connected. Thus $H\left(\psi_{1}, \psi_{2}\right)=S U(1,2)$.

Now we turn to the Lie algebra of $H\left(\psi_{1}, \psi_{5}\right)$. It is equal to

$$
\left.\begin{array}{rl}
\mathfrak{h}\left(\psi_{1}, \psi_{5}\right)=\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid-\omega_{16}-\omega_{25}+\omega_{37}=0\right. \\
& \omega_{12}-\omega_{56}=0, \omega_{13}-\omega_{67}=0, \omega_{23}-\omega_{57}=0 \\
& \omega_{15}-\omega_{26}=0, \omega_{17}+\omega_{36}=0, \omega_{27}+\omega_{35}=0 \\
& \omega_{i 4}=0, i=1,2,3, \omega_{4 j}=0, j=5,6,7 \tag{11}
\end{array}\right\}
$$

Using the isomorphism of $\mathfrak{s p i n}(4,3)$ and $\mathfrak{g o}(4,3)$, we see that the Killing form on $\mathfrak{G}\left(\psi_{1}, \psi_{5}\right)$ is non-degenerate and has index 3 . Therefore, $\mathfrak{h}\left(\psi_{1}, \psi_{5}\right)$ is a non-compact real form of the semisimple Lie algebra $\mathfrak{h}\left(\psi_{1}, \psi_{5}\right)^{\mathbb{C}}$. Since, furthermore, $\mathfrak{f}\left(\psi_{1}, \psi_{5}\right)^{\mathbb{C}}$ has dimension 8 it must be simple and therefore equal to $\mathfrak{z l}(3, \mathbb{C})$. The index of the Killing form distinguishes the various real forms of $\mathfrak{\xi l}(3, \mathbb{C})$. We conclude that $\mathfrak{h}\left(\psi_{1}, \psi_{5}\right)$ equals $\operatorname{sl}(3, \mathbb{R})$. Next we prove that $H\left(\psi_{1}, \psi_{5}\right)$ is connected and has fundamental group \mathbb{Z}_{2} which implies immediately $H\left(\psi_{1}, \psi_{5}\right)=S L(3, \mathbb{R})$ since the centre of the universal covering of $S L(3, \mathbb{R})$ equals \mathbb{Z}_{2}. Using the exact homotopy sequence of the fibration $S O^{+}(3,3) \xrightarrow{i} S O^{+}(4,4) \longrightarrow V(-1,1)$ we see that $\pi_{2}(V(-1,1))=\pi_{1}(V(-1,1))=0$. A look at the exact homotopy sequence of the fibration $H\left(\psi_{1}, \psi_{5}\right) \longrightarrow \operatorname{Spin}^{+}(4,3) \longrightarrow V(-1,1)$ now shows that $\pi_{1}\left(H\left(\psi_{1}, \psi_{5}\right)\right)=$ $\pi_{1}\left(\operatorname{Spin}^{+}(4,3)\right)=\mathbb{Z}_{2}$ and $\pi_{0}\left(H\left(\psi_{1}, \psi_{5}\right), 1\right)=0$.

Proposition 2.3. The action of $\operatorname{Spin}^{+}(4,3)$ on the Stiefel manifolds $V(-1,-1,-1)$, $V(-1,-1,1), V(-1,1,1)$ and $V(1,1,1)$ is transitive.

Proof. As in the proof of Proposition 2.2 it suffices to consider $V(-1,-1,-1)$ and $V(-1,-1,1)$. Again we calculate the Lie algebras of the corresponding isotropy groups. Let φ_{1}, φ_{2} and φ_{3} pseudo-orthonormal spinors with $\left\langle\varphi_{1}, \varphi_{1}\right\rangle_{\Delta}=-1$ and $\left\langle\varphi_{2}, \varphi_{2}\right\rangle_{\Delta}=-1$. Because of Proposition 2.2 we may assume $\varphi_{1}=\psi_{1}$ and $\varphi_{2}=\psi_{2}$. Again the isotropy group of $\left(\psi_{1}, \psi_{2}\right)$ contains the same subgroup isomorphically to $S U(2)$ as mentioned in the proof
of Proposition 2.2 and the group $S O(2) \subset S O(3)$ acting on $\operatorname{span}\left\{\psi_{3}, \psi_{4}\right\}$. Therefore we may set $\varphi_{3}=x_{3} \psi_{3}+x_{5} \psi_{5}$. Then the isotropy group of $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ has the Lie algebra

$$
\begin{gather*}
\mathfrak{h}\left(\psi_{1}, \psi_{2}, x_{3} \psi_{3}+x_{5} \psi_{5}\right) \\
=\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid-\omega_{12}-\omega_{34}+\omega_{56}=0\right. \\
\omega_{13}-\omega_{24}=0, \omega_{14}+\omega_{23}=0, \omega_{16}+\omega_{25}=0 \\
\omega_{15}-\omega_{26}=0, \omega_{36}+\omega_{45}=0, \omega_{35}-\omega_{46}=0 \\
x_{4} \omega_{56}-x_{5} \omega_{45}=0, x_{5} \omega_{34}+x_{4} \omega_{36}=0 \\
x_{5} \omega_{24}+x_{4} \omega_{26}=0, x_{5} \omega_{14}+x_{4} \omega_{16}=0 \\
x_{5} \omega_{46}=0, x_{4} \omega_{46}=0 \\
\left.\omega_{i 7}=0, i=1, \ldots, 6\right\} \tag{12}
\end{gather*}
$$

Since not $x_{3}=x_{5}=0$, the dimension of $\mathfrak{h}\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ equals 3 and the action is transitive.

Corollary 2.5. The isotropy group of a triple $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right)$ of pseudo-orthonormal spinors with respect to the $\operatorname{Spin}^{+}(4,3)$-action equals

1. $S U(2)$ if $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in V(-1,-1,-1)$ or $V(1,1,1)$,
2. $S L(2, \mathbb{R})$ if $\left(\varphi_{1}, \varphi_{2}, \varphi_{3}\right) \in V(-1,-1,1)$ or $V(-1,1,1)$.

Proof. The Lie algebra of the isotropy group $H\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ of $\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ equals

$$
\begin{align*}
& \mathfrak{h}\left(\psi_{1}, \psi_{2}, \psi_{3}\right)=\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid\right. \omega_{12}+\omega_{34}=0 \\
& \omega_{13}-\omega_{24}=0, \omega_{14}+\omega_{23}=0, \\
&\left.\omega_{i 5}=\omega_{i 6}=\omega_{i 7}=0\right\} \tag{13}
\end{align*}
$$

As a subalgebra of $\mathfrak{\xi 0}(4,4)$ it is spanned by $E_{56}-E_{78}, E_{57}+E_{68}$ and $E_{58}-E_{67}$ and equals therefore $\mathfrak{S H}(2)$ where $S U(2) \subset S U(2,2) \subset S O(4,4)$ is embedded in the usual way. In particular, the connected component of the unity of $H\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ is isomorphic to $S U(2)$. It remains to prove that $H\left(\psi_{1}, \psi_{2}, \psi_{3}\right)$ is connected. A look at the exact homotopy sequence of the fibration $H\left(\psi_{1}, \psi_{2}, \psi_{3}\right) \longrightarrow \operatorname{Spin}^{+}(4,3) \longrightarrow V(-1,-1,-1)$ shows that it suffices to prove that the group $\pi_{1}(V(-1,-1,-1))$ equals \mathbb{Z}_{2}. But this is clear from the exact homotopy sequence of $S O^{+}(1,4) \xrightarrow{i}{S O^{+}}^{+}(4,4) \longrightarrow V(-1,-1,-1)$.

We now prove the second assertion in the same way. The Lie algebra of the isotropy group $H\left(\psi_{1}, \psi_{5}, \psi_{6}\right)$ is

$$
\mathfrak{h}\left(\psi_{1}, \psi_{5}, \psi_{6}\right)=\left\{\sum_{i<j} \omega_{i j} e_{i} e_{j} \mid \omega_{12}-\omega_{56}=0, ~ \begin{array}{rl}
\omega_{16}+\omega_{25} & =0, \omega_{15}-\omega_{26}=0, \\
\omega_{i 3} & \left.=\omega_{i 4}=\omega_{i 7}=0\right\}
\end{array}\right.
$$

As a subalgebra of $\mathfrak{z o}(4,4)$ it is spanned by $E_{34}+E_{78}, E_{37}+E_{48}$ and $E_{38}-E_{47}$ and equals therefore $\mathfrak{S u}(1,1)$ where $S U(1,1) \subset S U(2,2) \subset S O(4,4)$ is embedded in the usual way. In particular, the connected component of $H\left(\psi_{1}, \psi_{2}, \psi_{5}\right)$ is isomorphic to $S U(2)$ which is on the other hand isomorphic to $S L(2 ; \mathbb{R})$. To show that $H\left(\psi_{1}, \psi_{5}, \psi_{6}\right)$ is connected it suffices to verify that the Stiefel manifold is simply connected. But this follows again from the exact homotopy sequence of the corresponding fibration $\mathrm{SO}^{+}(3,2) \xrightarrow{i} \mathrm{SO}^{+}(4,4)$ $\longrightarrow V(-1,1,1)$.

The rest of this section is devoted to real representations of $G_{2(2)}^{*}$. Recall that all complex representations of $g_{2(2)}$ are of real type [12]. Therefore, the real irreducible representations of the universal covering $\widetilde{G_{2(2)}}$ of $G_{2(2)}^{*}$ correspond to the real forms of the complex irreducible representations of $g_{2(2)}$. On the other hand the fundamental representations of $\widetilde{G_{2(2)}}$, i.e. the standard representation on \mathbb{R}^{7} and the adjoint representation are in fact representations of $G_{2(2)}^{*}$. Thus all representations of $\widetilde{G_{2(2)}}$ are representations of $G_{2(2)}^{*}$. We conclude that the real irreducible representations of $G_{2(2)}^{*}$ correspond exactly to the complex irreducible representations of $g_{2(2)}$. In particular, the dimensions of the irreducible real representations are $1,7,14,27, \ldots$ Furthermore, the decomposition of $\Lambda^{p}\left(R^{7}\right)$ into irreducible components of the $G_{2(2)}^{*}$-action is similar to that with respect to the action of the compact group G_{2}. Denote by $*$ the Hodge-operator of the pseudo-Euclidean space $\left(\mathbb{R}^{7}, g_{4,3}\right)$ and let ω_{0}^{3} be the 3 -form defined by (7). Then we have:

Proposition 2.4.

1. $R^{7}=\Lambda^{1}\left(R^{7}\right)=: \Lambda_{7}^{1}$ is irreducible.
2. $\Lambda^{2}\left(R^{7}\right)=\Lambda_{7}^{2} \oplus \Lambda_{14}^{2}$, where

$$
\begin{aligned}
\Lambda_{7}^{2} & =\left\{\alpha^{2} \in \Lambda^{2} \mid *\left(\omega_{0}^{3} \wedge \alpha^{2}\right)=2 \alpha^{2}\right\}=\left\{X _\omega_{0}^{3} \mid X \in R^{7}\right\} \\
\Lambda_{14}^{2} & =\left\{\alpha^{2} \in \Lambda^{2} \mid *\left(\omega_{0}^{3} \wedge \alpha^{2}\right)=-\alpha^{2}\right\}=g_{2(2)}
\end{aligned}
$$

3. $\Lambda^{3}\left(R^{7}\right)=\Lambda_{1}^{3} \oplus \Lambda_{7}^{3} \oplus \Lambda_{27}^{3}$, where

$$
\begin{aligned}
\Lambda_{1}^{3} & =\left\{t \omega_{0}^{3} \mid t \in R^{1}\right\} \\
\Lambda_{7}^{3} & =\left\{*\left(\omega_{0}^{3} \wedge \alpha^{1}\right) \mid \alpha^{1} \in \Lambda_{7}^{1}\right\} \\
\Lambda_{27}^{3} & =\left\{\alpha^{3} \in \Lambda^{3} \mid \alpha^{3} \wedge \omega_{0}^{3}=0, \alpha^{3} \wedge * \omega_{0}^{3}=0\right\}
\end{aligned}
$$

3. Killing spinors

Now let ($M^{4,3}, g_{4,3}$) be a seven-dimensional pseudo-Riemannian spin manifold of signature $(4,3)$ which is space and time oriented. Assume that $M^{4,3}$ admits a spin structure $Q\left(M^{4,3}\right)$. This is a $\operatorname{Spin}^{+}(4,3)$-reduction of the hundle $R\left(M^{4,3}\right)$ of all space and time oriented pseudo-orthonormal frames. Then the spinor bundle S of $M^{4,3}$ is the associated bundle $Q\left(M^{4,3}\right) \times_{\text {Spin }^{+}(4,3)} \Delta_{4,3}$. Furthermore ∇ denotes the Levi-Civita connection on the tangent bundle $T M^{4,3}$ as well as the induced covariant derivative on S. The pseudo-Euclidean product \langle,\rangle_{Δ} on $\Delta_{4,3}$ induces a product of signature $(4,4)$ on S.

Definition 3.1. A section $\psi \in \Gamma(S)$ is called Killing spinor if there is a real number $\lambda \neq 0$ such that the differential equation

$$
\nabla_{X} \psi=\lambda X \cdot \psi
$$

is satisfied for all vector fields $X \in \mathfrak{X}\left(M^{4,3}\right)$. We call λ the Killing number of ψ.
The following properties of Killing spinors are well-known [1]. Let $\psi \in \Gamma(S)$ be a Killing spinor on $M^{4,3}$ with Killing number λ. Then $\langle\psi, \psi\rangle_{\Delta}$ is constant on $M^{4,3}$. Hence, it makes sense to say that a Killing spinor is spacelike, timelike, or isotropic. For the Ricci map Ric : $T M^{4,3} \longrightarrow T M^{4,3}$ of the tangent bundle the equation $\operatorname{Ric}(X) \psi=24 \lambda^{2} X \cdot \psi$ holds. If ψ is non-isotropic, this means that $M^{4,3}$ is an Einstein manifold of scalar curvature $\tau=168 \lambda^{2}$. Now let W be the Weyl tensor of $M^{4,3}$. Then $W(X, Y) \cdot \psi=0$ for all $X, Y \in$ $\mathfrak{X}\left(M^{4,3}\right)$, where this product is defined in the following way. Let $s_{1}, s_{2}, \ldots, s_{7}$ be a local pseudo-orthonormal frame, $\varepsilon_{i}=g\left(s_{i}, s_{i}\right)$ and $W_{i j k l}=W\left(s_{i}, s_{j}, s_{k}, s_{l}\right)$. Then

$$
W\left(s_{i}, s_{j}\right) \cdot \psi=\sum_{k<l} \varepsilon_{k} \varepsilon_{l} W_{i j k l} s_{k} \cdot s_{l} \cdot \psi
$$

Of course, parallel spinors have the same properties. We now turn to the question of how many Killing spinors can exist on ($M^{4,3}, g_{4,3}$).

Theorem 3.1. If there exist four orthogonal non-isotropic Killing spinors with the same Killing number on $\left(M^{4,3}, g_{4,3}\right)$ such that at least three of them have the same causal type then $M^{4,3}$ is conformally flat.

Proof. Let $\varphi_{1}, \ldots, \varphi_{4}$ be four such Killing spinors. Let $\left\langle\varphi_{\alpha}, \varphi_{\alpha}\right\rangle_{\Delta}=-1$ for $\alpha=1,2,3$. Because of the transitivity of the $\operatorname{Spin}^{+}(4,3)$-action on $V(-1,-1,-1)$ we may assume that for some local time and space oriented pseudo-orthonormal frame s_{1}, \ldots, s_{7} the spinor φ_{α} equals ψ_{α} for $\alpha=1,2,3$. Moreover, since the isotropy group of $\left(\psi_{1}, \psi_{2}, \psi_{r_{3}}\right)$ equals $S U(2)$ acting on $\operatorname{span}\left\{\psi_{5}, \psi_{6}, \psi_{7}, \psi_{8}\right\}$ we can assume $\varphi_{4}=x_{4} \psi_{4}+x_{5} \psi_{5}$ where x_{4} and x_{5} are real functions. The condition $W\left(s_{i}, s_{j}\right) \cdot \varphi_{\alpha}=0(\alpha=1,2,3)$ implies

$$
W_{i j 12}+W_{i j 34}=0, \quad W_{i j 13}-W_{i j 24}=0, \quad W_{i j 14}+W_{i j 23}=0
$$

and $W_{i j k l}=0$ for any other k, l. Furthermore, we have

$$
\begin{aligned}
0 & =W\left(s_{i}, s_{j}\right) \cdot\left(x_{4} \psi_{4}+x_{5} \psi_{5}\right)=\sum_{k<l} \varepsilon_{k} \varepsilon_{l} W_{i j k l} s_{k} \cdot s_{l} \cdot\left(x_{4} \psi_{4}+x_{5} \psi_{5}\right) \\
& =x_{5}\left\{\left(-W_{i j 12}+W_{i j 34}\right) \psi_{6}+\left(W_{i j 13}+W_{i j 24}\right) \psi_{7}+\left(W_{i j 14}+W_{i j 23}\right) \psi_{8}\right\}
\end{aligned}
$$

Consequently, in case $x_{5} \neq 0$ the Weyl tensor must vanish and we are done. Consider now the case $x_{5}(m)=0$ for $m \in M^{4,3}$. If there is any sequence $m_{n} \in M^{4,3}$ which converges to m and such that $x_{5}\left(m_{n}\right) \neq 0$ then by continuity of the Weyl tensor we have again $W(m)=0$. Assume now that $x_{5}(m)=0$ on an open set containing m, i.e. $\varphi_{4}=\psi_{4}$. Since $\varphi_{1}, \ldots, \varphi_{4}$ are Killing spinors we have $\nabla_{s_{1}} \psi_{\alpha}=\lambda s_{1} \cdot \psi_{\alpha}(\alpha=1, \ldots, 4)$. We can calculate the covariant derivative using the local connection forms $\omega_{i j}=\varepsilon_{i} \varepsilon_{j} g_{4.3}\left(\nabla s_{i}, s_{j}\right)$ and obtain

$$
\nabla_{s_{1}} \psi_{\alpha}=\frac{1}{2} \sum_{i<j} \varepsilon_{i} \varepsilon_{j} \omega_{i j}\left(s_{1}\right) s_{i} \cdot s_{j} \cdot \psi_{\alpha}=\lambda s_{1} \cdot \psi_{\alpha} \quad(\alpha=1, \ldots, 4)
$$

In particular,

$$
\begin{aligned}
& -\omega_{27}\left(s_{1}\right)-\omega_{35}\left(s_{1}\right)+\omega_{46}\left(s_{1}\right)=2 \lambda, \\
& -\omega_{27}\left(s_{1}\right)+\omega_{35}\left(s_{1}\right)-\omega_{46}\left(s_{1}\right)=2 \lambda, \\
& -\omega_{27}\left(s_{1}\right)+\omega_{35}\left(s_{1}\right)+\omega_{46}\left(s_{1}\right)=-2 \lambda, \\
& -\omega_{27}\left(s_{1}\right)-\omega_{35}\left(s_{1}\right)-\omega_{46}\left(s_{1}\right)=-2 \lambda,
\end{aligned}
$$

which is impossible if $\lambda \neq 0$. The assertion can be proved similarly if $\left\langle\varphi_{\alpha}, \varphi_{\alpha}\right\rangle_{\Delta}=1$ for $\alpha=1,2,3$.

3.1. Geometrical and nearly parallel $G_{2(2)}^{*}$-structures

Let M^{7} be a seven-dimensional manifold and $R\left(M^{7}\right)$ the frame bundle of M^{7}. We define the bundle $\Lambda_{*}^{3}\left(M^{7}\right)$ by

$$
\Lambda_{*}^{3}\left(M^{7}\right):=R\left(M^{7}\right) \times_{G L(7)} \Lambda_{*}^{3}\left(R^{7}\right) \subset R\left(M^{7}\right) \times_{G L(7)} \Lambda^{3}\left(R^{7}\right)=\Lambda^{3}\left(M^{7}\right)
$$

where $\Lambda_{*}^{3}\left(R^{7}\right)$ is the open subset $\left\{A^{*} \omega_{0}^{3} \mid A \in G L(7)\right\}$ of $\Lambda^{3}\left(R^{7}\right)$.
Definition 3.2. A topological $G_{2(2)}^{*}$-structure ($\operatorname{Spin}^{+}(4,3)$-structure) on M^{7} is a $G_{2(2)}^{*}$ reduction ($\operatorname{Spin}^{+}(4,3)$-reduction) of the frame bundle $R\left(M^{7}\right)$.

The fact that $G_{2(2)}^{*}$ is a subset of $\mathrm{SO}^{+}(4,3)$ and of $\operatorname{Spin}^{+}(4,3)$ implies that a $G_{2(2)^{-}}^{*}$ structure $P \subset R\left(M^{7}\right)$ on M^{7} induces an orientation of M^{7} (i.e. $\omega_{1}=0$), a pseudoRiemannian metric $g_{4,3}$ of index 4 on M^{7} together with a space and time orientation such that the corresponding $S O^{+}(4,3)$-bundle equals $P \times_{G_{2(2)}^{*}} S O^{+}(4,3)$ and a spin structure $P \times_{G_{2}} \operatorname{Spin}^{+}(4,3)$. Furthermore it defines the following timelike spinor $\psi \in \Gamma(S)$ in the real spinor bundle $S=P \times_{G_{2(2)}^{*}} \Delta_{4,3}$ of M^{7}. Since $G_{2(2)}^{*} \subset \operatorname{Spin}^{+}(4,3)$ is the isotropy group of $\psi_{1} \in \Delta_{4,3}$ the map $\psi: P \longrightarrow \Delta_{4,3} ; \psi(p)=\psi_{1}$ has the property $\psi(p g)=g^{-1} \psi$ for all $g \in G_{2(2)}^{*}$ and is therefore a section in S. Because of the $G_{2(2)}^{*}$-invariance of ω_{0} the $G_{2(2)-}^{*}$ structure defines in the same way a section ω^{3} in $\Lambda_{*}^{3}\left(M^{7}\right)=R\left(M^{7}\right) \times{ }_{G L(7)} \Lambda_{*}^{3}\left(R^{7}\right)=$
$P_{G_{2}} \times_{G_{2(2)}^{*}} \Lambda_{*}^{3}\left(R^{7}\right)$ by $\omega^{3}: P \longrightarrow \Lambda_{*}^{3}\left(R^{7}\right) ; \omega^{3}(p)=\omega_{0}^{3}$. On the other hand the spinor ψ defines a (2,1)-tensor field $A=A_{\psi}$ (see Eq. (5)) on M^{7} and $\omega^{3}=g_{4,3}(\cdot, A(\cdot, \cdot)$) holds.

Vice versa, suppose we are given a 3 -form ω^{3} in $\Lambda_{*}^{3}\left(M^{7}\right)$ then M^{7} admits a $G_{2(2)}^{*}-$ structure P consisting of all frames relative to those ω^{3} equals ω_{0}^{3}. Secondly, given a pseudo-Riemannian metric $g_{4,3}$, a space and time orientation, a $\operatorname{Spin}^{+}(4,3)$-structure and a timelike spinor ψ on M^{7} then M^{7} admits a $G_{2(2)}^{*}$-structure P consisting of all frames relative to those ψ equals ψ_{0}.

Now we turn to geometrical $G_{2(2)}^{*}$-structures.
Definition 3.3. Let $P \subset R\left(M^{7}\right)$ be a topological $G_{2(2)}^{*}$-structure on M^{7} and $g_{4,3}$ the associated Riemannian metric with Hodge operator $* . P$ is said to be geometrical if one of the following equivalent conditions is satisfied.
(i) ∇ reduces to P.
(ii) The holonomy group $\operatorname{Hol}\left(M^{7}, g\right)$ of M^{7} is contained in $G_{2(2)}^{*}$.
(iii) The associated 3-form ω^{3} is parallel, i.e. $\nabla \omega^{3}=0$.
(iv) $\mathrm{d} \omega^{3}=0, \quad \mathrm{~d} * \omega^{3}=0$.
(v) The associated spinor field ψ is parallel, i.e. $\nabla \psi=0$.

For a proof of (iii) \Longleftrightarrow (iv) see [3,5,6].
Now we can generalize the condition $\nabla \psi=0$ and obtain the notion of a nearly parallel $G_{2(2)}^{*}$-structure.

Definition 3.4. Let $P \subset R\left(M^{7}\right)$ be a topological $G_{2(2)}^{*}$-structure on M^{7} and $g_{4,3}$ the associated Riemannian metric with Hodge operator $*$. P is said to be nearly parallel if one of the following equivalent conditions is satisfied.
(i) The associated spinor ψ is a Killing spinor with Killing number λ.
(ii) The associated tensor A satisfies

$$
\left(\nabla_{Z} A\right)(Y, X)=2 \lambda\left\{g_{4,3}(Y, Z) X-g_{4,3}(X, Z) Y+A(Z, A(Y, X))\right\} .
$$

(iii) The associated 3-form ω^{3} satisfies

$$
\left.\nabla_{Z} \omega^{3}=-2 \lambda(Z-\lrcorner * \omega^{3}\right)
$$

(iv) The associated 3-form ω^{3} satisfies

$$
d * \omega^{3}=0, \quad d \omega^{3}=-8 \lambda * \omega^{3}
$$

For a proof of (iii) \Longleftrightarrow (iv) see [4].

3.2. Examples of homogeneous spaces with Killing spinors

In the following we describe various seven-dimensional spaces with homogeneous pseudo-Riemannian metrics of index 4 . One can check directly that they all admit a homogeneous spin structure and using Wang's theorem on invariant connections (see [11]) that there
are Killing spinors on them. We obtain Section 3.2.1-3.2.3 example in remembering that we know seven-dimensional Riemannian homogeneous examples arising as S^{1}-fibrations over the twistor spaces of S^{4} and $\mathbb{C} P^{2}$ and constructing analogue S^{1}-fibrations over the twistor spaces of $\mathbb{R} P^{4,0}, S^{2,2}, \mathbb{C} P^{1,1}=U(2,1) /(U(1) \times U(1,1)), \mathbb{C} P^{2,0}=U(2,1) /(U(2) \times$ $U(1))$ and $S O^{+}(1,1)$-fibrations over the reflector spaces (see [8]) of $S^{2,2}$ and $S L(3, \mathbb{R}) /$ $G L^{+}(2, \mathbb{R})$. The further examples are also in a certain sense dual spaces of known compact Riemannian ones with Killing spinors, namely $V_{5,2}=S O(5) / S O(3)$ and $S O(5) / S O(3)_{\max }$. All examples can be understood in the context of "T-dual" spaces where we have a method to construct pseudo-Riemannian homogeneous spaces with special curvature properties from compact Riemannian ones. This is described in [9].

3.2.1. The round and the squashed $(4,3)$-sphere

The standard pseudo-Riemannian sphere $S^{4,3}$ is space and time oriented and admits a homogeneous spin structure. There is an eight-dimensional space of Killing spinors on $S^{4,3}$ to each of both possible Killing numbers. Each of these spaces is spanned by four timelike and four spacelike Killing spinors (with respect to $\left.(,\rangle_{\Delta}\right)$. We can consider the following fibrations of $S^{4,3}$ which are similar to the Hopf fibration of the Riemannian sphere S^{7} :

$$
\begin{aligned}
S^{3}=S p(1) & \longrightarrow S^{4,3}=S p(1,1) / S p(1) \\
& \longrightarrow S^{4,0} / \mathbb{Z}_{2}=\mathbb{H} P^{1,0}=S p(1,1) / S p(1) \times S p(1) \\
S^{2,1}=S p(2, \mathbb{R}) & \longrightarrow S^{4,3}=S p(4, \mathbb{R}) / S p(2, \mathbb{R}) \\
& \longrightarrow S^{2,2}=S p(4, \mathbb{R}) / S p(2, \mathbb{R}) \times S p(2, \mathbb{R})
\end{aligned}
$$

Now we can squash the fibres of these fibrations with scaling factor $\frac{1}{5}$ to obtain in each of both cases a further Einstein metric on the sphere $S^{4,3}$. Both metrics admit a one-dimensional space of non-isotropic Killing spinors. $S^{4,3}$ can be considered as $U(1)$-fibration over the twistor space of $S^{2,2}$ or $S^{4,0} / Z_{2}$ or as \mathbb{R}^{*}-fibration over the reflector space of $S^{2,2}$.

3.2.2. The spaces $\tilde{N}(1,1)$ and $\hat{N}(1,1)$

Consider now the homogeneous space $\tilde{N}(1,1)=S U(2,1) / S^{1}$ where the embedding of S^{1} into $S U(2,1)$ is given by

$$
\begin{aligned}
& S^{1} \hookrightarrow S U(2,1) \\
& z \longmapsto \operatorname{diag}\left(z, z, z^{-2}\right)
\end{aligned}
$$

We decompose $\mathfrak{s u}(2,1)$ into $\mathfrak{H} \mathfrak{u}(2,1)=\mathfrak{f} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ where \mathfrak{f} is the Lie algebra of S^{1}, \mathfrak{m}_{2} is the Lie algebra of $S U(2) \subset S U(2,1)$, and \mathfrak{m}_{1} equals $\left(f\left(\oplus m_{2}\right)^{\perp} \subset \mathfrak{Z u}(2,1)\right.$ with respect to the Killing form B of $\mathfrak{\xi l}(2,1)$. Then

$$
-B_{t}=-\left.B\right|_{\mathfrak{m}_{1} \times \mathfrak{m}_{1}}-\left.2 t B\right|_{\mathfrak{m}_{2} \times n_{2}}
$$

on $\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ induces a left invariant metric g_{t} on $\tilde{N}(1,1) . \tilde{N}(1,1)$ is space and time orientable and admits a spin structure. Again there are two possible choices of t to obtain an Einstein metric. In case $t=1$ we obtain a metric together with three linearly independent Killing
spinors of the same causal type and with the same Killing number. For $t=\frac{1}{5}$ we obtain a further Einstein metric on $\tilde{N}(1,1)$ together with a one-dimensional non-isotropic space of Killing spinors.

Next we consider the homogeneous space $\hat{N}(1,1)=S U(1,2) / S^{1}$ where the embedding of S^{1} into $S U(1,2)$ is given by

$$
\begin{aligned}
& S^{1} \hookrightarrow S U(1,2) \\
& z \longmapsto \operatorname{diag}\left(z, z, z^{-2}\right)
\end{aligned}
$$

We decompose $\mathfrak{z u}(1,2)$ into $\mathfrak{z u}(1,2)-\mathfrak{f} \oplus \mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ where \mathfrak{f} is the Lie algebra of S^{1}, \mathfrak{m}_{2} is the Lie algebra of $S U(1,1) \subset S U(1,2)$, and \mathfrak{m}_{1} equals $\left(\mathscr{f} \oplus \mathfrak{m}_{2}\right)^{\perp} \subset \mathfrak{g u}(1,2)$ with respect

$$
-B_{t}=-\left.B\right|_{\mathfrak{m}_{1} \times \mathfrak{m}_{1}}-\left.2 t B\right|_{\mathfrak{m}_{2} \times \mathfrak{m}_{2}}
$$

on $\mathfrak{m}_{1} \oplus \mathfrak{m}_{2}$ defines a left invariant metric g_{t} on $\hat{N}(1,1) . \hat{N}(1,1)$ is space and time orientable and admits a spin structure. Again we obtain in case $t=1$ an Einstein metric together with three linearly independent Killing spinors, now of different causal type, with the same Killing number. For $t=\frac{1}{5}$ we obtain a further Einstein metric on $\hat{N}(1,1)$ together with a one-dimensional non-isotropic space of Killing spinors.
$\tilde{N}(1,1)$ and $\hat{N}(1,1)$ are S^{1}-fibrations over $U(2,1) / U(1) \times U(1) \times U(1)$ which is the twistor space of $\mathbb{C} P^{2,0}$ and simultaneously the twistor space of $\mathbb{C} P^{1,1}$. Furthermore, $\tilde{N}(1,1)$ is a fibration over $\mathbb{C} P^{2,0}$ with fibre $\mathbb{R} P^{3}$ and $\hat{N}(1,1)$ is a fibration over $\mathbb{C} P^{1,1}$ with fibre $\mathbb{R} P^{2,1}$:

$$
\left.\begin{array}{rl}
\mathbb{R} P^{3} & =U(2) / U(1)
\end{array}\right) \underset{N}{ }(1,1)=S U(2,1) / U(1) \longrightarrow \mathbb{C} P^{2,0}=S U(2,1) / U(2),
$$

The second Einstein metric on $\tilde{N}(1,1)$ arises from the first by squashing the $\mathbb{R} P^{3}$-fibres over $\mathbb{C} P^{0,2}$ and in case of $\hat{N}(1,1)$ the second Einstein metric arises from the first by squashing the $\mathbb{R} P^{2,1}$-fibres over $\mathbb{C} P^{1,1}$.

3.2.3. The space $\bar{N}(1,1)$

Analogously we treat $\bar{N}(1,1)=S L(3, \mathbb{R}) / \mathbb{R}^{+}$where the embedding of \mathbb{R}^{+}into $S L(3, \mathbb{R})$ is given by

$$
\begin{aligned}
\mathbb{R}^{+} & \hookrightarrow S L(3, \mathbb{R}) \\
r & \longmapsto \operatorname{diag}\left(r, r, r^{-2}\right) .
\end{aligned}
$$

It can be considered as a fibration with fibre \mathbb{R}^{+}over the double covering of the reflector space of $S L(3, \mathbb{R}) / G L^{+}(2, \mathbb{R})$ and as fibration over $S L(3, \mathbb{R}) / G L^{+}(2, \mathbb{R})$ itself with fibre $S^{2,1} . \bar{N}(1,1)$ admits a homogeneous Einstein metric with three linearly independent Killing spinors of different causal type. We get a second Einstein metric in squashing the fibres over $S L(3, \mathbb{R}) / G L^{\prime}(2, \mathbb{R})$. This squashed metric admits one non-isotropic Killing spinor.

3.2.4. Stiefel manifolds

Let $\mathrm{SO}^{+}(4,1), \mathrm{SO}^{+}(2,3), \mathrm{SO}^{+}(3,2)$ be the connected components of the isometry groups of $\mathbb{R}^{4,1}, \mathbb{R}^{2,3}$ and $\left(\mathbb{R}^{5}, g=\operatorname{diag}(-1,-1,1,-1,1)\right.$), respectively. The embeddings

$$
\mathrm{SO}(3) \hookrightarrow \mathrm{SO}^{+}(4,1), \mathrm{SO}^{+}(2,1) \hookrightarrow \mathrm{SO}^{+}(2,3), \mathrm{SO}^{+}(2,1) \hookrightarrow \mathrm{SO}^{+}(3,2)
$$

are given by

$$
A \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & E
\end{array}\right), \quad E=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) .
$$

All these Stiefel manifolds are fibrations over the corresponding Grassmann manifolds. If we stretch the homogeneous standard metric (induced by the Killing form) in direction of the fibres by $\frac{3}{2}$ we obtain an Einstein metric with a two-dimensional space of Killing spinors. In case of $S O^{+}(2,3) / S O^{+}(2,1)$ all Killing spinors have the same causal type. In both other cases we find non-isotropic Killing spinors of different causal type.

3.2.5. $\mathrm{SO}^{+}(2,3) / \mathrm{SO}^{+}(2,1)_{m}$

First we describe the embedding of $\mathrm{SO}^{+}(2,1)$ into $\mathrm{SO}^{+}(2,3)$ which we will use here. We denote by $\mathcal{H}^{2}\left(\mathbb{R}^{2,1}\right)$ the harmonic (with respect to the indefinite metric), homogeneous polynoms of degree 2 on \mathbb{R}^{3}. We define an indefinite inner product on $\mathcal{H}^{2}\left(\mathbb{R}^{2,1}\right)$ by

$$
\left\langle p_{1}, p_{2}\right\rangle=\int_{S^{2}} p_{1}(\mathrm{i} x, \mathrm{i} y, z) p_{2}(\mathrm{i} x, \mathrm{i} y, z) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z
$$

for $p_{1}, p_{2} \in \mathcal{H}^{2}\left(\mathbb{R}^{2,1}\right) . S O^{+}(2,1)$ acts on $\mathcal{H}^{2}\left(\mathbb{R}^{2,1}\right)$ by $(A \cdot p)(x, y, z)=p(A \cdot(x, y, z))$ for $A \in S O^{+}(2,1), p \in \mathcal{H}^{2}\left(\mathbb{R}^{2,1}\right)$. The infinitesimal actions corresponding to the oneparametric subgroups

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cosh t & \sinh t \\
0 & \sinh t & \cosh t
\end{array}\right), \quad\left(\begin{array}{ccc}
\cosh t & 0 & \sinh t \\
0 & 1 & 0 \\
\sinh t & 0 & \cosh t
\end{array}\right), \quad\left(\begin{array}{ccc}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1
\end{array}\right)
$$

are $A_{1}=y \cdot(\partial / \partial z)+z \cdot(\partial / \partial y), \dot{A}_{2}=z \cdot(\partial / \partial x)+x \cdot(\partial / \partial z)$ and $A_{3}=x \cdot(\partial / \partial y)-y \cdot$ $(\partial / \partial x)$, respectively. One proves $A_{1}, A_{2}, A_{3} \in \xi \mathfrak{j}(2,3)$. Hence, we obtain an embedding of $S O^{+}(2,1)$ into $S O^{+}(2,3)$. We denote its image by $S O^{+}(2,1)_{m}$. There exists a homogeneous Einstein metric on $\mathrm{SO}^{+}(2,3) / \mathrm{SO}^{+}(2,1)_{m}$ with a one-dimensional space of non-isotropic Killing spinors.

3.3. Warped products with Killing spinors

3.3.1. Pseudo-Riemannian manifolds of signature $(4,2)$

Consider first $\mathbb{R}^{4,2}=\operatorname{Span}\left\{e_{1}, \ldots, e_{6}\right\} \subset \mathbb{R}^{4,3}$. We may restrict the real $\operatorname{Spin}(4,3)$ representation to $\operatorname{Spin}(4,2)$ and obtain the real spinor representation $\Delta_{4,2}$ of $\operatorname{Spin}(4,2)$. The connected component $\operatorname{Spin}^{+}(4,2)$ of $1 \in \operatorname{Spin}(4,2)$ acts transitively on $S^{4,3}$ and $H^{3,4}$. Actually, the proof of Proposition 2.1 remains valid.

The multiplication of spinors by the volume form of $\left(\mathbb{R}^{6}, g_{4,2}\right)$ yields a complex structure on $\Delta_{4,2}$. In fact, let X_{1}, \ldots, X_{6} be a positively oriented pseudo-orthonormal basis of ($\mathbb{R}^{6}, g_{4,2}$). Then we define J^{Δ} by $J^{\Delta}(\psi)=X_{1} \cdots X_{6} \psi . J^{\Delta}$ does not depend on the choice of the pseudo-orthonormal basis. We have $J^{\Delta}=-I \otimes I \otimes \varepsilon$ with respect to the standard basis $\downarrow / s_{1}, \ldots, \psi / 8$. Furthermore, J^{Δ} has the following properties.

1. $\left(J^{\Delta}\right)^{2}=-1$.
2. $X \cdot J^{\Delta}(\psi)=-J^{\Delta}(X \cdot \psi)$ for any $X \in \mathbb{R}^{4,2}$.
3. Besides $\langle X \cdot \psi, \psi\rangle_{\Delta}=0$ we also have $\left\langle X \cdot \psi, J^{\Delta}(\psi)\right\rangle_{\Delta}=0$.

Therefore the map

$$
\begin{aligned}
\mathbb{R}^{4,2} & \longrightarrow\left\{\psi, J^{\Delta}(\psi)\right\}^{\perp} \subset \mathbb{R}^{4,4} \\
X & \longmapsto X \cdot \psi
\end{aligned}
$$

is an isomorphism for any spinor $\psi \in \Delta_{4,2}$ with $\langle\psi, \psi\rangle_{\Delta} \neq 0$. In particular, we obtain a complex structure J_{ψ} of $\mathbb{R}^{4,2}$ defined by

$$
J_{\psi}(X) \cdot \psi:=J^{\Delta}(X \cdot \psi) \quad \text { for any } X \in \mathbb{R}^{4,2}
$$

Now let $\left(F^{4,2}, h\right)$ be a pseudo-Riemannian manifold of signature (4,2). J^{Δ} defines a complex structure J^{S} on the spinor bundle S^{F} of $F^{4,2}$. We have $\nabla J^{S}=0$. Assume now that $F^{4,2}$ admits a Killing spinor $\varphi \neq 0$ with Killing number λ. Then obviously $J^{S}(\varphi)$ is a Killing spinor with Killing number $-\lambda$. Furthermore, any nowhere vanishing nor isotropic section $\psi \in \Gamma\left(S^{F}\right)$ defines a complex structure J_{ψ} on $F^{4,2}$. If ψ is a non-isotropic Killing spinor then J_{ψ} is nearly Kählerian.

Next we discuss examples of such manifolds with Killing spinors.
The flag manifold $\tilde{F}(1,2)=S U(2,1) / U(1) \times U(1)$. Consider the homogeneous space $S U(2,1) / U(1) \times U(1)$ where the embedding of $U(1) \times U(1)$ into $U(2,1)$ is given by

$$
\begin{aligned}
U(1) \times U(1) & \hookrightarrow S U(2,1) \\
\left(z_{1}, z_{2}\right) & \longmapsto \operatorname{diag}\left(z_{1}, z_{2}, \overline{z_{1}} \overline{z_{2}}\right) .
\end{aligned}
$$

We decompose $\mathfrak{s u}(2,1)$ into $\mathfrak{s u}(2,1)=\mathfrak{u}(1) \oplus \mathfrak{u}(1) \oplus \mathfrak{m}$ where \mathfrak{m} is the orthogonal complement of $\mathfrak{u}(1) \oplus u(1)$ in $\mathfrak{s}(2,1)$ with respect to the Killing form B of $\mathfrak{u}(2,1)$. Now $-\left.B\right|_{\mathrm{m} \times \mathrm{m}}$ induces a $S U(2,1)$-invariant Einstein metric on $S U(2,1) /(U(1) \times U(1))$. $\tilde{F}(1,2)$ admits a spin structure. There exists a one-dimensional space of Killing spinors for each of both possible Killing numbers. $S U(2,1) /(U(1) \times U(1))$ can be considered as the twistor space of $\mathbb{C} P^{2,0}$ as well as the twistor space of $\mathbb{C} P^{1,1}$. Note that the metric considered here is not a Kähler-Einstein one. Those can be obtained from it by rescaling the fibres over $\mathbb{C} P^{2,0}$ or $\mathbb{C} P^{1,1}$.
$G L^{+}(3, \mathbb{R}) / \mathbb{R}^{+} \times \mathbb{R}^{+} \times S O(2)$. The embedding of $\mathbb{R}^{+} \times \mathbb{R}^{+} \times S O(2)$ into $G L^{+}(3, \mathbb{R})$ is given by

$$
\begin{aligned}
\mathbb{R}^{+} \times \mathbb{R}^{+} \times S O(2) & \hookrightarrow G L^{+}(3, \mathbb{R}) \\
\left(r_{1}, r_{2}, A\right) & \longmapsto\left(\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2} A
\end{array}\right) .
\end{aligned}
$$

There exist two homogeneous Einstein metrics on $G L^{+}(3, \mathbb{R}) / \mathbb{R}^{+} \times \mathbb{R}^{+} \times S O(2)$. As above the one induced by the Killing form of $G L^{+}(3, \mathbb{R})$ admits a one-dimensional nonisotropic space of Killing spinors for each of both possible Kiling numbers. $G L^{+}(3, \mathbb{R}) /$ $\mathbb{R}^{+} \times \mathbb{R}^{+} \times S O(2)$ is the twistor space of $S L(3, \mathbb{R}) / G L^{+}(2, \mathbb{R})$.

$$
S O^{+}(4,1) / U(2), S O^{+}(2,3) / U(1,1) . \text { Using }
$$

$$
J_{0}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

we define the matrix

$$
J=\left(\begin{array}{cc}
J_{0} & 0 \\
0 & J_{0}
\end{array}\right) \text {. Then } U(2) \text { is the subgroup } U(2)=\{A \in S O(4) \mid A J=J A\} \text { of }
$$ $S O$ (4). Furthermore, we have the embedding

$$
\begin{aligned}
U(2) \subset S O(4) & \hookrightarrow S O(4,1) \\
A & \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right) .
\end{aligned}
$$

Similarly we have $U(1,1)=\left\{A \in S O^{+}(2,2) \mid A J=J A\right\} \subset S O^{+}(2,2)$ and the embedding

$$
\begin{aligned}
U(1,1) \subset S O^{+}(2,2) & \hookrightarrow S O^{+}(2,3) \\
A & \longmapsto\left(\begin{array}{cc}
A & 0 \\
0 & 1
\end{array}\right)
\end{aligned}
$$

We decompose $\mathfrak{s o}(4,1)$ and $\mathfrak{s o}(2,3)$ into $\mathfrak{\mathfrak { o }}(4,1)=\mathfrak{u}(2) \oplus \mathrm{m}_{1}$ and $\mathfrak{\mathfrak { o }}(2,3)=\mathfrak{u}(1,1) \oplus \mathfrak{m}_{2}$, where \mathfrak{m}_{1} is the orthogonal complement of $\mathfrak{u}(2)$ in $\mathfrak{s o}(4,1)$ with respect to the Killing form of $\mathfrak{s o}(4,1)$ and \mathfrak{m}_{2} is the orthogonal compiement of $u(1,1)$ in $\mathfrak{s o}(2,3)$ with respect to the Killing form of $\mathfrak{j} \mathfrak{o}(2,3)$. The restrictions of the negative of the corresponding Killing forms to \mathfrak{m}_{1} and \mathfrak{m}_{2} induce invariant metrics on $S O^{+}(4,1) / U(2)$ and $S O^{+}(2,3) / U(1,1)$, respectively. These metrics are Einstein metrics and admit exactly one non-isotropic Killing spinor for each of the possible Killing numbers. Both spaces are diffeomorphic to $\mathbb{C} P^{2,1}$. We can think of $S O^{+}(4,1) / U(2)$ as the twistor space of $S^{4,0} / \mathbb{Z}_{2}=S O^{+}(4,1) / S O(4)$ and of $S O^{+}(2,3) / U(1,1)$ as the twistor space of the sphere $S^{2,2}$. Note that the Einstein metrics with Killing spinors are not the $U(2,2)$-homogeneous Kähler-Einstein metric on $\mathbb{C} P^{2,1}$. They arise from this Kähler-Einstein metric by rescaling the fibres over $S^{4,0} / \mathbb{Z}_{2}$ and $S^{2,2}$, respectively. The fibres are spacelike in the first case and timelike in the second case. In particular, $\mathrm{SO}^{+}(4,1) / U(2)$ and $\mathrm{SO}^{+}(2,3) / U(1,1)$ are not isometric.
$\operatorname{Spin}(2,2)$. We denote by B the Killing form of $\mathfrak{s p i n}(2,2)$. Let m_{1} be the Lie algebra of $\operatorname{Spin}(2,1) \subset \operatorname{Spin}(2,2)$ and \mathfrak{m}_{2} its orthogonal complement with respect to B. Then $-\left.B\right|_{\mathfrak{m}_{1}}$ $-\left.3 B\right|_{\mathfrak{m}_{2}}$ induces a left-invariant Einstein metric on $\operatorname{Spin}(2,2)$ with a one-dimensional non-isotropic space of Killing spinors for each of both possible Killing numbers.

3.3.2. Pseudo-Riemannian manifolds of signature $(3,3)$

Consider now $\mathbb{R}^{6}=\operatorname{Span}\left\{e_{1}, e_{2}, e_{3}, e_{5}, e_{6}, e_{7}\right\} \subset \mathbb{R}^{7}$ with pseudo-Euclidean product $g_{3,3}=\left.g_{4,3}\right|_{\mathbb{R}^{6}}$. We may restrict the real $\operatorname{Spin}(4,3)$-representation to $\operatorname{Spin}(3,3)$ and obtain the real spinor representation $\Delta_{3,3}$ of $\operatorname{Spin}(3,3)$.

The multiplication of spinors by the volume form of $\left(\mathbb{R}^{6}, g_{3,3}\right)$ defines now a map J^{Δ} on $\Delta_{3,3}$ with $\left(J^{\Delta}\right)^{2}=1 . J^{\Delta}$ anti-commutes with the Clifford multiplication, i.e. $X \cdot J^{\Delta}(\psi)=$ $-J^{\Delta}(X \cdot \psi)$ for any $X \in \mathbb{R}^{6}$. We have $J^{\Delta}=-\sigma \otimes \tau \otimes \tau$ with respect to the standard basis $\psi_{1}, \ldots, \psi_{8}$. Now let $\left(F^{3,3}, h\right)$ be a pseudo-Riemannian manifold of signature $(3,3)$. J^{Δ} defines a map J^{S} on the spinor hundle S^{F} of $F^{3,3}$. We have $\nabla J^{S}=0$. Assume now that $F^{3,3}$ admits a Killing spinor $\varphi \neq 0$ with Killing number λ. Then obviously $J^{S}(\varphi)$ is a Killing spinor with Killing number $-\lambda$.
$U(2,1) / U(1) \times S O^{+}(1,1) \times U(1)$. The embedding of $U(1) \times S O^{+}(1,1) \times U(1)$ into $U(2,1)$ is given by

$$
\begin{aligned}
U(1) \times S O^{+}(1,1) \times U(1) & \hookrightarrow U(2,1) \\
\left(z_{1}, A, z_{2}\right) & \longmapsto\left(\begin{array}{cc}
z_{1} & 0 \\
0 & z_{2} A
\end{array}\right) .
\end{aligned}
$$

There exist two homogeneous Einstein metrics on $U(2,1) / U(1) \times S O^{+}(1,1) \times U(1)$. The one induced by the Killing form of $U(2,1)$ admits a one-dimensional non-isotropic space of Killing spinors for each of both possible Killing numbers. $U(2,1) / U(1) \times S O^{+}(1,1) \times U(1)$ is the reflector space of $\mathbb{C} P^{1,1}$.
$G L^{+}(3, \mathbb{R}) / \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$. The embedding of $\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$into $G L^{+}(3, \mathbb{R})$ is given by

$$
\begin{aligned}
\mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+} & \hookrightarrow G L^{+}(3, \mathbb{R}) \\
\left(r_{1}, r_{2}, r_{3}\right) & \longmapsto \operatorname{diag}\left(r_{1}, r_{2}, r_{3}\right) .
\end{aligned}
$$

There exist two homogeneous Einstein metrics on $G L^{+}(3, \mathbb{R}) / \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$. The one induced by the Killing form of $\mathfrak{g l}(3, \mathbb{R})$ admits a one-dimensional non-isotropic space of Killing spinors for each of both possible Killing numbers. $G L^{+}(3, \mathbb{R}) / \mathbb{R}^{+} \times \mathbb{R}^{+} \times \mathbb{R}^{+}$is a double covering of the reflector space of $S L(3, \mathbb{R}) / G L^{+}(2, \mathbb{R})$.

$$
S O^{+}(2,3) / G L^{+}(2, \mathbb{R})
$$

Here we consider $\mathrm{SO}^{+}(3,2)$ as the connected component of the isometry group of ($\mathbb{R}^{5}, g_{3,2}$), where now $g_{3,2}$ is given with respect to the standard basis by the diagonal matrix $\operatorname{diag}(-1,1,-1,1,-1) . G L^{+}(2)$ is embedded in $S O^{+}(2,3)$ in the following way:

$$
\begin{aligned}
G L^{+}(2, \mathbb{R}) & \hookrightarrow S O^{+}(3,2) \\
N & \longmapsto A \cdot\left(\begin{array}{ccc}
N & 0 & 0 \\
0 & \left({ }^{t} N\right)^{-1} & 0 \\
0 & 0 & 1
\end{array}\right) \cdot A^{-1}
\end{aligned}
$$

where

$$
A=\left(\begin{array}{cc}
A^{\prime} & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad A^{\prime}=\frac{1}{\sqrt{2}}\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
1 & 0 & 1 & 0 \\
0 & 1 & 0 & -1 \\
0 & 1 & 0 & 1
\end{array}\right)
$$

$\mathrm{SO}^{+}(2,3) / G L^{+}(2)$ admits two homogeneous Einstein metrics. The one which is induced by the restriction of the negative of the Killing form of $\mathfrak{B D}(2,3)$ onto the orthogonal complement of $\mathfrak{g l}(2)$ in $\mathfrak{s o}(2,3)$ admits a one-dimensional non-isotropic space of Killing spinors for each of both possible Killing numbers. $S O^{+}(2,3) / G L^{+}(2, \mathbb{R})$ is the reflector space of $S^{2,2}$.
$\operatorname{Spin}(3,1)$. We denote by B the Killing form of $\mathfrak{s p i n}(3,1)$. Let \mathfrak{m}_{1} be the Lie algebra of $\operatorname{Spin}(3) \subset \operatorname{Spin}(3,1)$ and \mathfrak{m}_{2} its orthogonal complement with respect to B. Then $-\left.B\right|_{\mathrm{m}_{1}}$ $-\left.3 B\right|_{\mathrm{m}_{2}}$ induces a left-invariant Einstein metric on $\operatorname{Spin}(3,1)$ with a one-dimensional nonisotropic space of Killing spinors for each of both possible Killing numbers.

3.3.3. Construction of warped products with Killing spinors

Let $\left(F^{4,2}, h\right)$ be a pseudo-Riemannian spin manifold of signature $(4,2)$ with spin structure Q_{F} and spinor bundle S_{F}. Furthermore, let $I=(a, b) \subseteq \mathbb{R}$ be an open interval and $\sigma \in$ $C^{\infty}(I,(0, \infty))$ be a smooth positive function. We consider the warped product

$$
\left(M^{4,3}, g\right):=F^{4,2} \times_{\sigma} I:=\left(F^{4,2} \times I, \sigma(t) h \oplus \mathrm{~d} t^{2}\right)
$$

Denote by $\pi: F^{4,2} \times I \longrightarrow F^{4,2}$ the projection. Let \tilde{Q} be that spin structure of $\left(M^{4,3}, g\right)$ whose $\operatorname{Spin}(n-1)$-reduction with respect to $\xi=\partial / \partial t$ restricted to any fibre $F^{4,2} \times\{t\}$ yields that spin structure of $\left(F^{4,2}, \sigma(t) h\right)$ which is conformally equivalent to the spin structure Q_{F} of $\left(F^{4,2}, h\right)$. The spinor bundle S of $\left(M^{4,3}, g\right)$ can be identified with the bundle $\pi^{*} S_{F}$ by

$$
\begin{gathered}
\pi^{*} S_{F} \xrightarrow{\longrightarrow} S=\tilde{Q} \times_{\operatorname{Sin}(4,3)} \Delta_{4,3} \\
\psi=[q, u(x, t)] \longmapsto \widetilde{\psi}=[\tilde{q}, u(x, t)],
\end{gathered}
$$

where \tilde{q} denotes that element of $\tilde{Q}_{(x, t)}$ which corresponds to $q \in\left(Q_{F}\right)_{x}$ relative to the conformal equivalence of Q_{F} and $\left.\tilde{Q}\right|_{F^{4,2} \times\{t\}}$. For a section $\psi \in \Gamma\left(\pi^{*} S_{F}\right)$ we denote by $\psi_{t} \in \Gamma\left(S_{F}\right)$ the spinor field $\psi_{t}(x):=\psi(x, t)$. Furthermore, for a vector field X on $F^{4,2}$ let \tilde{X} be the vector field $\tilde{X}(x, t):=\sigma(t)^{-1 / 2} X(x)$ on $M^{4,3}$. Then the following formulae for the Clifford multiplication and the spinor derivative hold:

$$
\begin{align*}
& \tilde{X}(x, t) \cdot \widetilde{\psi}(x, t)=X(x) \widetilde{\psi_{t}}(x) \tag{15}\\
& \xi \cdot \widetilde{\psi}=-\widetilde{J^{S}} \psi \tag{16}\\
& \nabla_{\tilde{X}} \widetilde{\psi}=\sigma(t)^{-1 / 2} \widetilde{\nabla_{X} \psi_{t}}-\frac{1}{4} \sigma^{-1} \sigma^{\prime} \tilde{X} \cdot \xi \cdot \tilde{\psi} \tag{17}\\
& \nabla_{\xi} \tilde{\psi}=\frac{\partial}{\partial t} \psi \tag{18}
\end{align*}
$$

Theorem 3.2. Let φ^{+}and $\varphi^{-}:=J^{S}\left(\varphi^{+}\right)$be Killing spinors on $F^{4,2}$ with Killing numbers λ and $-\lambda$, respectively. We may assume $\lambda>0$. Denote by ψ^{+}and ψ^{-}the sections $\psi^{+}(x, t)=$ $\cos (\lambda t) \varphi^{+}(x)-\sin (\lambda t) \varphi^{-}(x)$ and $\psi^{-}(x, t)=\sin (\lambda t) \varphi^{+}(x)-\cos (\lambda t) \varphi^{-}(x)$ of $\pi^{*} S_{F}$. Then $\widetilde{\psi^{+}}$and $\widetilde{\psi^{-}}$are Killing spinors on $F^{4,2} \times_{\cos ^{2}(2 \lambda t)}(-\pi / 4 \lambda, \pi / 4 \lambda)$ with Killing numbers λ and $-\lambda$, respectively.

Proof. Follows by direct calculations using (15)-(18).

Now we consider the warped product

$$
\left(M^{4,3}, g\right):=F^{3,3} \times_{\sigma} I:=\left(F^{3,3} \times I, \sigma(t) h-\mathrm{d} t^{2}\right)
$$

using a neutral six-dimensional pseudo-Riemannian manifold. Denote by $\pi: F^{3,3} \times$ $I \longrightarrow F^{3,3}$ the projection. $\left(M^{4,3}, g\right)$ admits a spin structure \tilde{Q} such that the $\operatorname{Spin}(3,3)-$ reduction of \tilde{Q} with respect to $\xi=\partial / \partial t$ restricted to any fibre $F^{3,3} \times\{t\}$ yields that spin structure of ($F^{3,3}, \sigma(t) h$) which is conformally equivalent to the spin structure Q_{F} of $\left(F^{3,3}, h\right)$. As above the spinor bundle S of $\left(M^{3,3}, g\right)$ can be identified with the bundle $\pi^{*} S_{F}$ and now the following formulae for the Clifford multiplication and the spinor derivative hold.

$$
\begin{aligned}
& \tilde{X}(x, t) \cdot \widetilde{\psi}(x, t)=X(x) \widetilde{\psi_{t}}(x), \\
& \xi \cdot \tilde{\psi}=-\widetilde{J^{S} \psi} \\
& \nabla_{\tilde{X}} \tilde{\psi}=\sigma(t)^{-\frac{1}{2}} \widetilde{\nabla_{X} \psi}+\frac{1}{4} \sigma^{-1} \sigma^{\prime} \tilde{X} \cdot \xi \cdot \widetilde{\psi}, \\
& \nabla_{\xi} \tilde{\psi}=\frac{\widetilde{\partial}}{\partial t} \psi .
\end{aligned}
$$

Theorem 3.3. Let now φ^{+}and $\varphi^{-}:=J^{S}\left(\varphi^{+}\right)$be Killing spinors on $F^{3,3}$ with Killing numbers λ and $-\lambda$, respectively. We may assume $\lambda>0$. Denote by ψ^{+}and ψ^{-}the sections $\psi^{+}(x, t)=\cosh (\lambda t) \varphi^{+}(x)-\sinh (\lambda t) \varphi^{-}(x)$ and $\psi^{-}(x, t)=\sinh (\lambda t) \varphi^{+}(x)+$ $\cosh (\lambda t) \varphi^{-}(x)$ of $\pi^{*} S_{F}$. Then $\widetilde{\psi^{+}}$and $\widetilde{\psi^{-}}$are Killing spinors on $F^{4,2} \times_{\cosh ^{2}(2 \lambda t)} \mathbb{R}$ with Killing numbers λ and $-\lambda$, respectively.

Acknowledgements

I acknowledge conversations with Pawel Nurowski at the subject matter of the present paper.

References

[1] H. Baum, Th. Friedrich, R. Grunewald, I. Kath, Twistors and Killing Spinors on Riemannian Manifolds, Teubner-Verlag, Stuttgart-Leipzig, 1991.
[2] R.L. Bryant, Metrics with exceptional holonomy, Ann. Math. 126 (1987) 525-576.
[3] R.L. Bryant, S.M. Salamon, On the construction of some complete metrics with exceptional holonomy, Duke Math. J. 58 (1989) 829-850.
[4] Th. Friedrich, I. Kath, A. Moroianu, U. Semmelmann, On nearly parallel G_{2}-structures, J. Geom. Phys. 23 (1997) 259-286.
[5] A. Gray, Vector Cross products on manifolds, Trans. Amer. Math. Soc. 141 (1969) 465-504.
[6] A. Gray, Weak Holonomy Groups, Math. Zeitschrift 123 (1971) 290-300.
[7] N. Jacobson, Exceptional Lie Algebras, Marcel Dekker, New York, 1971.
[8] G.R. Jensen, M. Rigoli, Neutral Surfaces in Neutral Four-spaces, Le Matematiche, vol. XLV, 1990, Fasc. II, pp 407-443.
[9] I. Kath, Pseudo-Riemannian T-duals of compact Riemannian reductive spaces, Sfb 288 Preprint No. 253, Berlin, 1997.
[10] I. Kath, Sasakian structures and Killing spinors on pseudo-Riemannian manifolds, in preparation.
[11] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, vol. I, Wiley /interscience, New York, 1963.
[12] J. Tits, Tabellen zu den einfachen Lie Gruppen und ihren Darstellungen, Lecture Notes in Mathematics, vol. 40, Springer, Berlin, 1967.

[^0]: ${ }^{1}$ E-mail: kath@mathematik.hu-berlin.de.

